Preparation and Characterization of Spherical Agglomerates of diabetic drug by direct compression method and a comparative evaluation with innovative tablets

A Consultancy Project

Inception Source Pvt Ltd – Hyderabad

By

Dr. K.Venu Madhav M.Pharm PhD

Professor,

Department of Pharmaceutics

St.Pauls College of Pharmacy,

Department of Pharmaceutics,

Turkhyamzal, Abdullapurmet (M)-501510,

Rangareddy Dist,

Telangana

May-2019

ra garli constituenti A Constituenti

-

the formation of the section of the section of

2

· ·

(Approved by AICTE, PCI and Affiliated to Osmania University)

2018-2019

Title: Preparation and Characterization of Spherical Agglomerates of diabetic drug by direct compression method and a comparative evaluation with innovative tablets

Principal Investigator: Dr. K. Venu Madhav M. Pharm PhD

CO-Investigator: Mr. S. Kiran Kumar M. Pharm

• literature review
• Procurement of Chemicals

• Preparation of Formulations

33-48
weeks

• Characterization & Evaluation

Cost Analysis

S.No	Parameter	Amount in Rupees
1	Man power	79,450
2	Consumables	95,550
3	Contingencies	25,000
4	Overhead Charges	15,000
Total	-	215000

Principal

Principal Investigator

Co-Investigator

ICHE du HYDERABAD.

		i.	

List of Tables

S.NO	Table	Page number
L	List of equipment	12
2.	List of Chemicals	13
3,	Organoleptic properties of tablets of empagliflozin	22
4.	Angle of repose and flow properties	23
5.	Carr's index –flow properties	24
6.	Limits of hausners ratio	24
7.	Limits of weight variation test	26
8.	In vitro dissolution parametres of empagliflozin	27
9,	Interpretation of diffusional release mechanism	28
10.	Conditions of stability studies	29
11.	Phytochemicals identified	73
12.	Determination of swelling index of CS-NMM	74
13.	Viscosity of 1%w/v CS-NMM	74
14.	Solubility of CS-NMM	77
15.	Physical stability studies of extracted CS-NMM	79
16.	Solubility studies of drugs	79
17.	Preliminary trials for drug spherical agglomerates	80
18.	Effect on stirring speed on characteristic spherical agglomerates	81
19.	Organoleptic properties of tablets	82
20.	Formulation chart of empagliflozin	83
21.	Pre-formulation parameters	84
22.	Post compression Parameters	85
23.	First order kinetics of F1-F3	90
24.	First order kinetics of F4-F6	91
25.	First order kinetics of F7-F9	92
26.	First order kinetics of F10-F12	93
27.	First order kinetics of F13-F15	94
28.	First order kinetics of F16-F18	95
29.	First order kinetics of F19-F21	96

30	First order kinetics of F19-F21	97
31	First order kinetics of F19-F21	98
32	Higuchi's data of F1-F3	99
33	Higuchi's data of F4-F6	100
34	Higuchi's data of F7-F9	101
35	Higuchi's data of F10-F12	102
36	Higuchi's data of F13-F16	103
37	Higuchi's data of F17-F19	104
38	Higuchi's data of F20-F21	105
39	Higuchi's data of F22-F24	106
40	Peppa's data of F1-F3	107
41	Peppa's data of F4-F6	108
42	Peppa's data of F7-F9	109
43	Peppa's data of F10-F12	110
44	Peppa's data of F13-F15	111
45	Peppa's data of F16-F18	112
46	Peppa's data of F19-F21	113
47	Peppa's data of F22-F24	114
48	Drug release kinetic profile of empagliflozin tablets	116
49	Comparison of dissolution data	118
50	Compatibility profile empagliflozin and excipients	129
51	In-vitro tablets composition	132
52	Linearity of empagliflozin	133
53	HPLC method validation values	135
54	Plasma concentrations of empagliflozin at different time intervals	143
55	Plasma concentrations of marketed formulation	145
56	Pharmacokinetic parameters of marketed formulation	146
57	Comparative bioavailability parameters of standard and test formulations	148
58	Stability studies of empagliflozin optimized formulation	149

List of Figure

S.NO	Figure	Page number
1,	Caesalpiniaspinosa plant	14
2.	Caesalpiniaspinosa fruit and seed	14
3.	Flow chart of extraction of natural polymer	15
4.	Flowchart of preparation of agglomerates	19
5.	Tablet punching machine	26
6.	USP 26 Dissolution apparatus	27
7.	Flowchart of preparation of sample solutions	30
8.	Flow chart of analytical method development	31
9.	Flowchart of preparation of standard solutions	32
10.	FTIR of CS-NMM	75
11.	DSC spectrum of CS-NMM	76
12.	C ¹³ NMR of CS-NMM	77
13,	H ¹ NMR of CS-NMM	78
14.	Comparative dissolution profiles for formulations F1-F3	86
15,	Comparative dissolution profiles for formulations F4-F6	87
16.	Comparative dissolution profiles for formulations F7-F9	88
17.	Comparative dissolution profiles for formulations F10-F12	88
18.	Comparative dissolution profiles for formulations F13-F16	89
19.	Comparative dissolution profiles for formulations F17-F20	90
20.	First order rate kinetics F1-F3	91
21.	First order rate kinetics F4-F6	91
22.	First order rate kinetics F7-F9	92
23.	First order rate kinetics F10-F12	93
24.	First order rate kinetics F13-F15	94
25.	First order rate kinetics F16-F18	95
26.	First order rate kinetics F19-F21	96
27.	First order rate kinetics F22-F24	96
28.	First order rate kinetics F16-F18	97
29.	First order rate kinetics F19-F21	97
30.	First order rate kinetics F22-F24	97
31.	First order rate kinetics F16-F18	97
32.	Higuchi's plot for F1-F3	98
33	Higuchi's plot for F4-F6	00
34.	Higuchi's plot for F7-F9	100
35.	Higuchi's plot for F10-F12	101
36.	Higuchi's plot for F13-F15	102
37.	Higuchi's plot for F16-F18	103
38.	Higuchi's plot for F19-F21	104
39.	Higuchi's plot for F22-F24	105
40.	Peppas Plot for F1-F3	106
41.	Peppas Plot for F4-F6	107
42.	Peppas Plot for F7-F9	108

43.	Peppas Plot for F10-F12	109
44.	Peppas Plot for F13-F15	110
45.	Peppas Plot for F16-F18	111
46.	Peppas Plot for F19-F21	112
47.	Peppas Plot for F22-F24	112
48.	Peppas Plot for F22-F24	113
49.	Dissolution profiles of empagliflozin formulations	114
50.	Dissolution profiles of empagliflozin formulations	114
51.	Dissolution profiles of empagliflozin formulations	115
52.	Dissolution profiles of empagliflozin formulations	116
53.	FTIR of best formulation	119
54.	FTIR of pure empagliflozin	120
55.	FTIR of drug + ethyl cellulose	121
56.	FTIR of empagliflozin + HPMC	122
57.	FTIR of empagliflozin + Cesalpiniaspinosa	123
58.	FTIR of empagliflozin + sodium alginate	124
59.	FTIR of empagliflozin + magnesium stearate	125
60.	DSC spectrum of pure drug	126
61.	X-ray diffraction spectra of pure empagliflozin	126
62.	SEM of pure empagliflozin	127
63.	DSC spectrum of pure drug	128
64.	Linearity of empagliflozin	134
65.	Chromatogram of empagliflozin	136
66	Stability studies of drug release of empagliflozinat 10th hour	130
67.	Stability studies of drug release of empagliflozin at 12 th hour	139
68.	Plasma concentration vs time profile of marketed drug	143
69.	Plasma concentration vs time profile of spherical agglomerates	144
70.	Comparative dissolution profiles for formulations F1-F3	149
71.	Comparative dissolution profiles for formulations F4-F6	150
72.	Comparative dissolution profiles for formulations F7-F9	150
73.	Comparative dissolution profiles for formulations F10-F12	150
74.	Comparative dissolution profiles for formulations F13-F15	151
75.	Comparative dissolution profiles for formulations F16-F18	152
76.	Comparative dissolution profiles for formulations F19-F21	152
77.	Comparative dissolution profiles for formulations F22-F24	152
78.	First order plots of F1-F3	153
79.	First order plots of F4-F6	154
80.	First order plots of F7-F9	155
81.	First order plots of F10-F12	156
82.	First order plots of F13-F15	157
83.	First order plots of F16-F19	158
84.	First order plots of F20-F22	159

Contents

Chapter	Content	Page Number
	Abstract	
	List of Tables	
	List of Figures	
I	Introduction	1-4
	➤ Need for the study	
	Introduction to Spherical Agglomerates	
	Advantages and applications of Spherical Agglomerates	<u></u>
II	Review of literature	5-7
	Aim & Objective	
III	Drug & Excipient Profile	8-10
IV	Materials and Methods	11-72
	Plan of work	
	Extraction and characterization of natural polymer	
	Preparation and characterization of spherical agglomerates	
	Formulation of tablets	
	Optimization of Formulations	
	In Vivo evaluation of tablets	
	➤ HPLC methodology	
V	Results and Discussion	73-149
	General characterization	
	> Stability testing	
	> Preparation and characterization of spherical agglomerates	
	Micrometric properties	
	Dissolution studies and kinetic studies of formulations	
	Comparative study with marketed product	
	Spectral CharacterizationIn vivo studies	
	F III VIVO STUDIES	
VI	Outcome of the project	150-151

Chapter I

Introduction-Need for the Study

1.1 Direct tableting: API are used in Direct tableting techniques by tablet manufacturers over the past few decades that provides compressed form of tablets which are cost reliable.

The sustainability of APIs in the current market along with the addition of excipients and tableting equipment have made solid dosage forms especially tablet manufacturers to increase their demand and supply as it is the convenient dosage form used by maximum no. of patients. Many advantages are offered by these—dosage forms like ease of manufacturing, accurate dosing, convenience in administration and stability criteria when compared to oral liquid formulations, tamperproofness to that of capsules, patient acceptability towards tablets than parenteral etc. that had an impact on making it more popular than others.

"Direct Compression" is the term that is referred as the process through which tablets are directly compressed from the powder blends of active ingredients and excipients that are suitable for its preparation. Pre-treatment is not required for powder blends when wet or dry granulation method is carried out. Out of 100 per cent of APIs less than 20% of drugs can be directly compressed into tablets while the rest of the ingredients lack flow or lubricating properties or cohesion which is required for production of tablets by DC. By using directly compressible adjuvants satisfactory results can be obtained by tablet processing.

Direct tabletting of active pharmaceutical ingredients (APIs) is applicable when powders have a better flow property and compression criteria, which is a problem for major of the active ingredients that have poor compressibility and flow characteristics. On addition of excess amount of diluents or by performing wet or dry granulation satisfactory results can be obtained.

1.2 DIABETES MELLITUS

Diabetes mellitus is a Greek word which is commonly called as diabetes. It is a chronic metabolic disorder where in sugar levels in blood are high (i.e. above from the normal range) because enough insulin is not produced in the body. Diabetes occurs in pancreas as it produces the insulin hormone (it is the organ that speeds up the transfer of sugar from blood and deliveries into muscle, liver and fat tissues). If body doesn't have enough insulin then sugar accumulates in blood stream which results in diabetes mellitus. Diabetes is the most hazardous disease.

There are 3 major types of DM

> Type 1 diabetes –ID- DM/ juvenile onset DM (5-100%)

- Type 2 diabetes NID DM/ adult onset DM (90-95%)
- Pre-diabetic stage (IGT)
- Gestational diabetes
- \triangleright Other types (1-2%):
 - ✓ Genetic syndromes (affecting insulin secretion or action)
 - ✓ Endocrinopathies (Cushing's syndrome, pheochromocytoma, Acromegaly, glaucoma, thyrotoxicosis)
 - ✓ Disease of pancreas -cancer, chronic pancreatitis
 - ✓ Drug or chemical induced beta blockers, corticosteroids, thiazide diuretics)
 - ✓ Viral Infections

DIABETES-TYPE 1:

Diabetes type 1 also called as IDD. It usually occurs in childhood and hence called juvenile onset diabetes. This Type 1 diabetes occurs due to absolute deficiency of insulin. Other reasons include genetic predisposition. It is the condition of auto immunity where the body attacks own pancreas with antibodies. Ketoacidosis is the first manifestation of the disease which is observed in some children and adolescents. Some of the patients have insulinopenia permanently and are also exposed to ketoacidosis but do not have evidence of auto immunity. Number of medical risks are associated with type 1 diabetes mellitus many of them includes diabetic retinopathy (damage to the tiny blood vessels in eyes), diabetic neuropathy (nerves) and nephropathy (kidney damage) and also includes heart risks.

TYPE 2 DIABETES:

This occurs due to inadequate compensatory of insulin secretory response. It is the most prevalent type of diabetes mellitus. It is called maturity onset of diabetes mellitus because it starts with adulthood. It is also known non-insulin dependent diabetes. It causes major health disturbances especially in blood vessels that are smaller in size in the body, kidney, nerves and eyes and also heart diseases. In this type the pancreas generally produces some insulin, but it is not sufficient for the body needs or body cells and are resistant to body, so it is called as insulin resistance (lack of sensitivity to insulin). Obesity is the main risk factor for cause of diabetes mellitus.

GESTATIONAL DIABETES (GD):

DM that occurs during pregnancy is called as GD. GD is usually diagnosed in second or third trimesters of pregnancy, since high blood sugar levels in mother are being circulated through placenta to foetus. GD is necessary to be regulated inorder to save the foetal development and growth. During

method of adding bridging liquid, agitation speed, temperature, to obtain highest yield of spherical particles/crystals.

1.3.1. Advantages of Spherical Agglomeration

- 1. Flow properties are improved and compression characteristics of the drug which can be directly compressed into tablet and micromeritic property of the drug crystals can be drastically improved which include changes in the size, shape, crystal habit and porosity of drug.
- 2. The bioavailability of hydrophobic drugs is enhanced with the help of SA, crystalline form is converted into other polymorphic forms that have higher solubility and hence resulted in better bioavailability and this technique can be employed for masking the taste of bitter drugs (ATH &Enoxacin)

1.3.2. Applications

- 1. By this technique dissolution, solubility, bioavailability of poorly soluble drugs can be enhanced, Flowability and compressibility of drug can be improved by this technique and taste masking of bitter drugs.
- 2. Used in preparation of other novel drug delivery system like micro particle, micro sponges, micro balloons, micro pellets and also in controlled drug delivery systems.

pregnancy the action of insulin is influenced by hormonal changes, which simultaneously increases glucose levels in the body

DIAGNOSIS:

Fasting plasma glucose test:

Normal fasting blood sugar level 70 - 100 mg per dl FPGL is 126 mg/dl or high is known as diabetes

Oral glucose tolerance test:

A liquid which is containing 75 grams of glucose is taken by a person and the blood sugar level is above 200 mg/dl is diagnosed as diabetes.

Hemoglobin A1C (glycohaemoglobin) test:

It is used to measure the average glucose levels in blood for a duration of 60-90 days. The Hemoglobin A1C level is above 6.5% then the person is diagnosed as diabetes.

INSULIN:

Insulin is a hormone that is secreted from pancreas situated behind and below the stomach and helps in body metabolism and controlling the blood sugar levels, pancreas secreted insulin into the blood stream. Insulin circulates allowing sugar enter into the blood stream. Insulin decreases the amount of sugar in blood circulation. Insulin regulates fat and glucose use and storage in body.

It controls blood glucose level by taking glucose which is stored in liver muscle and fat cells as glycogen, liver can store up to 5% of its mass as glycogen.

1.3 SPHERICAL AGGLOMERATION

Spherical agglomeration is a unique procedure that increases particle size in which fine crystal formed by different crystallization method are aggregated with the help of bridging liquid to form the spherical crystals and they possess improved the micromeritic properties of powder. The spherical agglomerates can be then directly compressed into tablets. This method was first prepared by Kawashima et al. in 1986. SC is the more effective method as it involves less labour cost, processing time is less, low energy consumption is required, less equipment are required and also less space is required and it saves time and reduces economic risk. The particle design technology is used in industrial sectors to improve the 1° and 2° characteristics of particles. (1° properties like crystal form, crystal habit, particle shape, size, crystal density and porosity. 2° properties like flow ability, compressibility, packability, compatibility reduction in air entrapment, wettability and flow). Spherical agglomeration technique is also preferred to improve the solubility, bioavailability and dissolution of poorly soluble and poorly compressible drugs. This process is simple and requires consideration of drug solubility and agglomerating conditions. Parameters which are to be optimized for SA method are amount and

Chapter II

2.1 Review of literature

JyothiThati et al., has performed Spherical agglomerates of benzoic acid have now been successfully prepared by semi-batch, agitated vessel, drowning-out crystallization in water-ethanol-toluene mixtures. With increasing feeding rate the particle size decreases and the fracture force increases the morphology remains unchanged. Using toluene since the bridging liquid contributes to improved product properties rather than chloroform. To reveal the mechanisms of the synthesis of the agglomerates, experiments have been already performed. The outcomes show that the properties of the particles change, gradually but substantially over the length of the process. Particle size and number increases alongside increasing feed. The spherical shape develops gradually but does not appear immediately, and is shown to be quite definitely the consequence of the agitation of the slurry.

Mudit Dixit et al., conducted their study on Ketoprofen, which is an anti-inflammatory drug that exhibits poor water solubility and flow properties. By the neutralization method Spherical agglomerates were prepared. Crystallization medium useful for spherical agglomerates of ketoprofen contained 1 M Sodium hydroxide; 0.25 M hydrochloric acid; chloroform (bridging liquid) in the ratio of 20:55:25, respectively. By differential scanning calorimetry, Infrared spectroscopy, X-ray diffractometry and scanning electron microscopy the spherical agglomerates were characterized. Micromeritic and dissolution behaviour studies were carried out. Process variables such as quantity of bridging liquid, stirring time and duration of stirring were optimized. The spherical agglomerates of dissolution profile was compared with pure sample and recrystallized sample. By direct compression and evaluated for tablet properties Tablets were prepared using spherical agglomerates. Decreased crystalline and improved micromeritic properties were exhibited by spherical agglomerates. The dissolution profiles of ketoprofen tablets prepared using spherical agglomerates exhibit greater dissolution behaviour than tablets prepared by powder raw material.

SarfarazMd et al., researched on aceclofenac-disintegrant agglomerates with improved solubility, flow and compression characteristics by a novel crystallo-co-agglomeration (CCA) technique. By using a three solvent system comprising of acetone: DCM: water, Aceclofenac agglomerates were prepared. Acetone-water containing PEG 6000, HPC and disintegrants like sodium starch glycolate (SSG), crospovidone (CP) and croscarmellose sodium (CCS) in different concentrations were used since the crystallization medium. The agglomerates were characterized by FTIR, DSC, PXRD, SEM studies and were evaluated for flow, packing and tableting properties and drug release. DSC and XRPD studies indicated that aceclofenac particles, crystallized in the presence of HPC, PEG 6000 and

disintegrant didn't undergo structural modifications. The dissolution rate of aceciofenac from the agglomerates could possibly be controlled by the quantity of included disintegrant, being enhanced since the latter was increased. Among most of the formulations studied, F-9 prepared by incorporation of CP (18.43%) had shown short disintegration time (18.03 sec) and maximum drug release.

A.R. Tapaset al., prepared Felodipine tablets by quasi emulsion solvent diffusion technique to enhance the dissolution rate of felodipine using spherical agglomeration technique with acetone, water and dichloromethane nearly as good solvent, poor solvent and bridging liquid, respectively. In agglomeration process Inutec SP1 was used as an emulsion stabilizer and as hydrophilic polymer. After crystallization process The FTIR and DSC results showed no change in the drug. Sharp peaks in the diffractograms of spherical agglomerates with minor reduction in height of the peaks were showed by PXRD studies. Enhanced solubility in comparison to untreated powder possibly because of the partial conversion to amorphous form was showed by Spherical agglomerates.

AlladiSaritha et al., prepared meloxicam tablets by using spherical agglomeration technique. The aim of their study is to boost the dissolution rate and to transform the meloxicam crystals in to spherical agglomerates. Conventional crystals have lesser dissolution rates when compared to spherical agglomerates of meloxicam. By differential scanning calorimetry, Infrared spectroscopy, X-ray diffractometry and scanning electron microscopy characterizes the Spherical agglomerates. The DSC results indicated that decline in melting enthalpy related to disorder in the crystalline content. The changes in crystallinity showed by XRD studies. And the IR spectroscopy revealed that there is no pure drug without impurities. The optimized spherical agglomerates provide rapid anti-inflammatory activity that was revealed by the pharmacodynamic activity.

Sachin kumarpatil et al., using methanol, chloroform and water nearly as good solvent, bridging liquid and poor solvent, agglomerates were prepared. Direct compressible tablets of the agglomerates showed appropriate hardness, friability, and weight variation and disintegration time with improved drug release than conventional marketed tablets. Pharmacokinetic study indicated rapid absorption with higher bioavailability of the drug from the prepared tablets of agglomerates than marketed tablet (Glyburide; Sandoz). Hence, the tablets prepared with the agglomerates of Glibenclamide may reduce the sum total dose of drug and could improve the patient compliance by reducing the dose-related side effects.

2.2 AIM &OBJECTIVE OF THE RESEARCH WORK

AIM

The aim of the current investigation is to prepare, characterize and evaluate spherical agglomerates of Anti diabetic drugs with increased bioavailability characteristics prepared by direct compression method and also a comparative evaluation with marketed tablets for its evaluation.

OBJECTIVE

The objective of the current research work embodies

- ✓ Preparation and formulation of selected drug candidates (Glipizide&Empagliflozin) using spherical agglomeration technique.
- ✓ To characterize the prepared formulations for DSC studies, XRD studies, FT-IR studies and SEM
- ✓ To evaluate the potentiality of different polymers used in the formulations for its dissolution criteria, bioavailability and other parameters
- ✓ To optimize the formulation for its desired release profile both in *in-vitro* and *in-vivo*

III. Drug & Excipient profile

3.1Drug Profile

Table: Empagliflozin

Structure	он он он он
Trade Name	Jardiance
Chemical	D Glucitol 1,5-anhydro-1-C-[4-chloro-3-[[4-[[(3S)-tetra hydro
Name	3furanyl]oxy]methyl]phenyl]
CAS number	864070-44-0
Molecular	C ₂₃ H ₂₇ CLO ₇
Formula	
Molecular	450.912gm/mol
Weight	
IUPAC name	(2S,3R,4R,5S,6R)-2-[4-chloro-3-[[4-[(3S)-oxolan-3-
	yl]oxyphenyl]methyl]phenyl]-6-(hydroxymethyl)oxane-3,4,5-triol
Therapeutic	It belongs to SGLT2 inhibitors. It comes under the category of Class –III drugs in
Category	BCS classification
Description	It is non-hygroscopic powder and white to yellowish in colour.
Solubility	It is soluble in organic solvents, slightly <i>soluble</i> in water, sparingly <i>soluble</i> in methanol, slightly <i>soluble</i> in ethanol and acetonitrile; <i>soluble</i> in 50% acetonitrile/water; and insoluble in toluene.
Mechanism	Empagliflozin is a SGLT-2 inhibitor. For reabsorption of glucose from kidneys
	(Glomerular filtrate) SGLT2 co-transporters are responsible. The glucuretic
	effect resulting from SGLT2 inhibition decreases renal absorption and lowers the
	renal threshold for glucose which results in increased glucose excretion
Dose and	10mg, 25mg in morning with or without food
dosage forms	Tablet, Film coated

plasma	1.5 hours
concentration,	73.8L
Volume of	86.2% protein bound
distribution,	Metabolized by 3 metabolites are 2-O-, 3-O- and 6-O-Glucronide.
Plasma protien	41.2% eliminated in faeces & 54.4% eliminated in urine.
binding,	5)
Metabolism,	
Elimination	
Biological Half	5.6-12.4 h
life	
Storage	It is stored at room temperature and away from heat and moisture.

3.2 Excipient profile

3.2.1 Caesal pinias pinosa

Caesalpiniaspinosa is a small leguminous tree or thorny shrub which is native to Peru. It is commonly called Tara, the scientific name for Tara spinosa was Caesalpiniaspinosa. It is specially cultivated for increased source of tannins, which is based on a galloylatedquinic acid structure.

TABLE: CAESALPINIA SPINOSA

Caesalpiniaspinosa
Tara, Spiny hold back, Taya, algarroba tanino
Plantae
Fabales
Fabaceae
Tara
Tara spinosa, Caesalpiniaspinosa.
T. spinosa grows at a height of 2–5 m tall and its bark has scattered prickles which is dark grey and contain twigs that are hairy
5,500 cps, up to 145 °C (can withstand high temp conditions)
Used in controlled release medications, food additives

Other polymers like HPMCK100M, Ethyl cellulose and Sodium alginate were also used in different formulations.

IV.Methodology

Plan of Work

To achieve the above mentioned aim and objective of the research work, the plan has been divided into various distinct phases

Phase I- Review of Literature

Phase II- Collection of plant for extracting natural polymer and Identification and sourcing of raw materials

Phase III- Design, Development and Characterization

Phase IV- Performing evaluation for the prepared batches both in vitro and in vivo.

Table:1List ofequipment

S.No	Nameoftheequipment	Model
1.	ElectronicweighingBalance	CWS602
2.	Dissolution testapparatus	Electrolab TDT08L
3.	Friabilator	Electrolab
4.	Compressionmachine	CadmachYAW-300
5.	Stabilitychamber	VS511
6.	Tablethardnesstester	MonsantohardnesstesterSHT-17
7.	Ultra violetspectrophotometer	Labindia3000+
8.	Differential scanningcalorimetry	DSC50
9.	X-raydiffraction	BrukerD5005
10.	Fouriertransformer infra-red	FTIR-8033

	spectrophotometer	
11,	Verniercalipers	Cd-6"Cs
12.	pHmeter	pHCal10
13.	Highperformanceliquidchromatography	
14.	Tapped densitymeter	ETD-1020

Table 4.2: List of chemicals

S.No.	nameofthechemical	Grade/variety	Manufacturername
1,.	Ethylcellulose	Rand D grade	BASF
2.	Sodiumalginate	Rand D grade	BASF
3.	Hydroxy propyl methylcellulose	Rand D grade	BASF
4,	Magnesiumstearate	Technicalgrade	Sigma-Aldrich
5.	Water	HPLC	Merck
6.	Acetone	HPLC	BRUCE
7,.,	Chloroform	Analyticalgrade	Sigma-Aldrich
3.	Methanol	HPLC	Sigma-Aldrich
9.	Dichloromethane	Analyticalgrade	Merck

4.1 Extractionandcharacterizationofnaturalpolymer

4.1.1. Extractionofnaturalpolymer

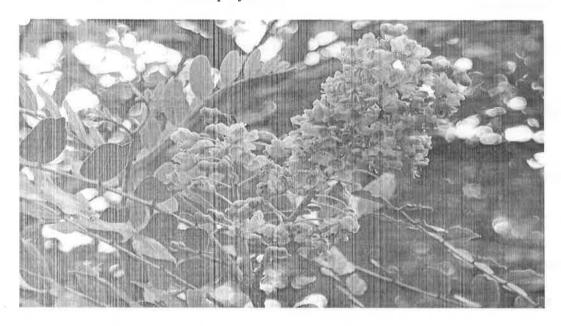


Fig1: Caesalpiniaspinosaplant

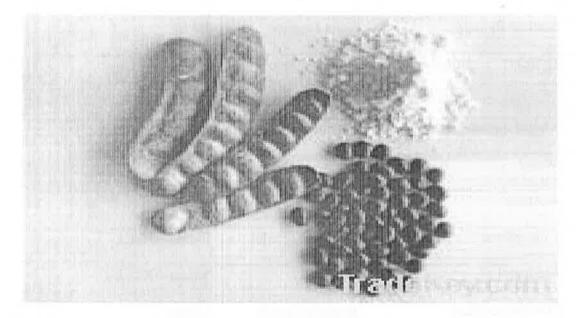


Fig2: Caesalpiniaspinosaseeds

4.1.1.a. Collectionandauthentication of plants

The seeds of Caesalpeniaspinosawere collected from in and around areas of Nelloredistrict. The plants were authenticated by Prof. K. Madhava Chetty, department of botany, SV University, Tirupathi, Chittoor district, Andhra Pradesh, India and seeds specimens amples were keptinthe laboratory for further use.

4.1.1. b.Extractionofnaturalmucoadhesivematerials³⁸

500mgofseedswerecollected andwashed thoroughlywithwaterand dried

Driedseedsweresoakedindistilledwater(2500ml)for 24hrs

Boiled for one hour with continuous stirring at 2000rpm and then kept aside in order to releasethenaturalgumintowater

Seedsweresqueezedusingmuslinclothandmarcwasseparatedunder vacuumat60°C

Acetone was added to precipitate the natural mucoadhesive materials-separatedbyfiltrationanddriedat60°C inhotairoven

Thematerialwaspassed throughsieveno. 100 and stored at room temperature

Fig3:Flowchartpresentationofextraction of natural polymer-CSNMM

4.1.1.c. Percentageyield of natural material

Itwascalculatedfromtheratiobetweentheinitialweightandthefinalweightofthe extractedMMM. The percentage yield of CS-NMM is 15% w/w.

4.1.2. Generalcharacterization of CS-NMM.

4.1.2.a. Identificationtestsforhydrocolloid

- A small amount of extracted material was mixed with ruthenium red anda cover slip was placed on its top. After a few seconds, lead acetatesolution was added. A blotting paper was used to remove the excessamountofstrain. Hydrocolloidwasstainedpinkcolour.
- A small amount of extracted material was mixed with corallin soda andwasplacedonaglassslide.25%sodiumcarbonatesolutionwasaddedto it and a cover slip was placed on it. Hydrocolloid was stained pinkcolour.
- A small amount of extracted material was mixed with distilled water andboiledforfewminutes. Aftercooling agelatinous mass was observed. 79

4.1.2.b. PhytochemicalconstituentsinCS-NMM-identification

The extracted material was subjected to qualitative chemical analysis by using astandardprocedure. 80,81 Theresults are shown intable 5.1.

4.1.2.c. DeterminationofpHofextractedmucoadhesivematerial

OnegramoftheextractedmaterialofCS-

NMM was dissolved in 100 ml distilled water and their pH was measured using a digital pH meter.

4.1.2.d. Determination of swelling index of CS-NMM

Procedure: CS-NMM(200mg), was placed on a petri-dish and 10 mlof distilled water was added and the mixture was shaked vigorously at 10 min for 1 hr. It was allowed to stand for 3 hours at room temperature. In between the process, at an interval of every 1 hour the remaining water in Petri-dish was discarded and the increase in weight of the CS-NMM was noted. The weight increase was observed because of the sticky hydrogel property of the material extracted. The procedure was repeated for three times and mean value was noted. The swelling index was calculated for the CS-NMM inwater, atpH1.2 and 7.4. The report is mentioned intable 5.2.

4.1.2. e.Meltingpoint determination of CS-NMM

Afinely powderedmaterial wasfilledintoonecapillary tubewhich wassealed onsingleside.Itisintroducedintoameltingpointapparatus.⁸²

4.1.2.f. Determination of viscosity of 1% w/vCS-NMM.

1% w/v aqueous solution of the extract was prepared. The viscosity of the solution was measured at different temperatures using ostwald's viscometer. ⁸² Theresultswere depicted intable 5.3.

Viscosity(η_1)= $\eta_2 \times (d_1t_1/d_2t_2)$

Where, η_1 =Viscosity of natural mucoadhesive material solution, η_2 = Viscosity ofwater, d_2 = Density of water, d_1 = Density of sample solution, t_2 = Time of flow ofwater(sec), t_1 =Timeofflowofsamplesolution.

4.1.2. g. Fouriertransforminfrared spectroscopy (FTIR)

IR was recorded by KBr samples of CS-NMM the frequency range 4000-400cm⁻¹ using a Shimadzu,model 8033(USA).⁸³ FTIR spectrum was shown asfig. 5.1andinterpretation of datawas explained in the table 5.4.

4.1.2.h. Differentialscanningcalorimetry(DSC)

DSCwasperformedbytaking10mgofthe samplebyusingDSC-50Shimadzuautomaticthermalanalyzer. 84DSCspectrumismentionedinfig. 5.2

4.1.2.i. SolubilitystudiesofCS-NMM

The solubility study was conducted by using different solvents. The results of solubility studies is shown in table 5.5

4.1.2.j. Nuclearmagneticresonance

¹³CNMR

¹³C-NMR spectrum was recorded using Bruker II 600 spectrometer in 2%deuterated acetic acid in D₂O solution for CS-NMM. The measured NMR spectrumwas interpreted and reported to confirm the presence of polysaccharides. ⁸⁵The ¹³C -NMR spectrum of CS-NMM is shown in fig. 5.3.

¹HNMR

H-NMRspectrumwasrecordedusingBrukerAC250tecmagDSPect(modified)fourier transform NMRspectrometer at400.13 MHzin 1Mmethanolsolution at 32°C.NMR spectrum was interpreted to calculate the no. of protons usingchemicalshiftvalue(PPM)i.e.thechemicalshiftingrange. The H-NMRspectrumofCS-NMMis showninfig.5.4.

4.1.3. Antimicrobial activity

The extract of Caesalpiniaspinosawas tested for its antimicrobial effect against somecommon microorganisms and for growth promoting properties. The sterility test wasperformed as per Indian Pharmacopoeia. Sterility test was done in order to detect the presence of against Staphylococcus aureus in the prepared extract. A simple procedure like agar disc diffusion technique is employed to perform sterility test. Aspecified quantity of sample was incubated aseptically at 250°C and 45%RH usingautoclave at 121°C for 15 min; then allowed to cool to 45°C before pouring into theagar plate. The pH of the agarmedium wasmaintained at 7.4. The stock solution ofthe extract was prepared on each occasion by careful weighing and dissolving insuitable volume of dimethyl sulphoxide (DMSO) to get a concentration of 100 mg/ml.A tablet of tetracycline was dissolvedin appropriate volume of water to get5 mg/mlofstocksolutionandthegrowthofmicroorganismsinthemediumwascheckedfor

14 days and sterilizedThe plates were left at room temperature for solidification. Each plate, a single well of 6 mm diameter was made using a sterile borer. Theextracts were freshly reconstituted with suitable solvents (dimethyl sulphoxide) andtested at various concentrations. The samples were placed in 6-mm diameter well. Antibacterial assay plates were incubated at 37±2°C for 24°h, standard disc (6 mmdiameter) with cephalosporin (5µg/ml) was used as a positive control for antibacterialactivity plates were kept in laminar flow for 30 minutes for pre diffusion of extract tooccur and then incubated at 37°C for 24 hours. Resulting zone of inhibition wasmeasured at the end of incubation period to clarify the presence of microbial growth. Positive controls were equally set up by using solvents and test organisms withoutextracts. The tube with least concentration of extract without growth after incubationwastakenandrecordedastheminimuminhibitoryconcentration

4.1.4. Stabilitytestingstudies

The physical and chemical stability of a producthavebeen tested under definedstorage conditions and the shelf-life was established. Quality of crude drug materialdepends upon the content variation and stability during storage. Environmental factors such as temperature, light, air (specifically oxygen, carbon dioxide and water vapors) and humidity may affect stability. Similarly, factors such as particle size, pH, the properties of water and other solvents employed results from can influence stability. Hence an accelerated stability studies were performed as per ICH guidelines for aperiod of 6 months. These studies were performed on the extract taken. The results are illustrated intable: 5.7.

Accelerated conditions:

i)at25 °C \pm 2 °C/60% RH \pm 5% RHii)40 °C \pm 2

°C/65%RH±5%RH

iii)40°C±2 °C/75%RH ±5%RH

iv)8°C±2 °C/60%RH ±5%RH foraperiodof6months

4.2 Preliminary studies for the preparation of spherical agglomerates

In spherical crystallization method as reported by Kwashima et al., ¹⁷was chosen forpreparationofsphericalagglomerates by direct compression method.

Theflowdiagramofthemethodisoutlinedbelow:

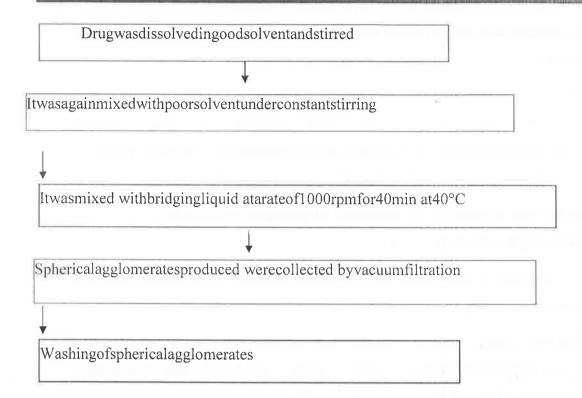


Fig4: Flowdiagramforthepreparation spherical agglomerates

In this method, generally a good solvent is required to dissolve the drug. Bridgingliquid helps in collecting the crystals that are suspended within the system that formsbridges among the liquid interface among the crystals because of capillary negative pressure and interfacial tension that is exerted between the interface of solid and liquid. A poor solvent is required for precipitation of drug. Hence, preliminary trialsweretaken as follows for selection of agood solvent, bridging liquid and poor solvent.

4.2.1 Selectionofbridgingliquid, poorsolvent and goodsolvent

The solubility of the drugs was determined in different solvents by adding 100 mg ofdrug to 1 ml of solvent with stirring. The list of solvents used for studying solubility isshownintableno.5.7alongwiththe solubility observations.

4.2.2. Selection of bridging liquids:

Thebridgingliquidmustbemisciblewiththegoodsolventselected—dichloromethane. Hence, miscibility studies of dichloromethane was studied with n-hexane, chloroform and glycerine in proportions of 1:1,1:2,1:3,1:4 and 1:5 respectively.

4.2.3 Preliminaryselectionofprocessparametersaffectingtheformationofspherical agglomerates

Various factors affecting this process are stirring rate, type of non-solvent, rate of addition of drug solution and stirring time after addition of drug solution. Hence, different trials were taken for identifying the significant parameters. The observations with respect to each process are also shown in table no. 5.9 and 5.10 respectively.

4.2.4 Mechanism involved in the formation of spherical agglomerates and factors affecting the sphericity

The following mechanism is involved in the formation of spherical agglomeratesthroughthe spherical crystallization technique.

- Internal phase (dichloromethane and chloroform) and external phase (water)aremiscible,butfor avery small timebeforecompletemiscibility takesplace,internalphasemayexistas globules.
- Diffusion of for dichloromethane and chloroform may take place from the globules into water. In addition, diffusion of water can take place from the external phase into globules. Both diffusion processes may be responsible for the formation of drug particles due to anti-solvent effect.
- The spherical shape of particles may be due to formation of particles withinglobuleswhicharegenerallysphericalinnature.
- The degree of sphericity may be influenced by the life span of the globule.Longer the life span of globule,more sphericalmay be the agglomerates.Timedurationforwhichtheinternalphaseexistasglobules,maybeinf luencedbyitsviscosity.Astheviscosityincreases,lifespanoftheglobules increases. Chloroform in the internal phase helps in increasing theviscosityoftheinternalphase.²⁴

4.3 Preparationandcharacterizationofsphericalagglomerates

4.3.1 Preparation of spherical agglomerates

Agglomerates of drug were preparedby spherical crystallization method.10mg drug was tend to get dissolved in dichloromethane. Chloroform is added to the solution containing drug and thoroughly mixed. The mixture of drug, dichloromethane and chloroform was added at a rate of 1 ml/mintowaters tirred at a

rate of 1000 rpm using magnetic stirrer. Stirring was continued for a period of 40minutes after complete addition of mixture. The particles of drug obtained thewater were separated by vacuum filtration and dried at 40°C. Particles were washed with water (25 ml each 3 times) to make them free from solvents. The agglomerates obtained were free flowing and of spherical in shape. 24

4.3.2 Characterizationofspherical agglomerates

The prepared spherical agglomerates of drugs were characterized³³ as per the detailsmentionedbelow.

i) DSCstudy

A DSC study was performed inorder to detect polymorphic transition and thermalproperties of the drug while crystallization occurs. These changes can be measured byusing thermal analyser. About 3-5mg of drug was mounted on aluminium sealed pans, and temperature was fixed from 25°C-250°C/min, undernitrogen fixed environment. The DSC apparatus must be calibrated using Indium which is a pure metal, before every study 33,88.

ii) FT-IRspectroscopy

The FT-IR spectra were measured using a Shimadzu, model 8033(USA) which ismaintained at ambient temperature. The drug samples that should be detected were dispersed in KBrpowder and pellets were made by applying 5 ton pressure 33,89.

iii) X-Raydiffractionstudies

X-Ray powder diffraction studies were analyzed at room temperature using Brukerdiffractometer, where Cuacts as an ode material and graphite monochromator, which is operated at a voltage of 40 mA, 45 kV. It is used to determine the conversions of state i.e. from crystalline to amorphous forms and interactions between drug and excipients used are noted if any. 33

iv) Scanningelectronmicroscopy(SEM)

SEM(Shimadzu-LV-5600,USA,withmagnification of 250X)photographswereconsidered in order to confirm spherical nature and also to measure the surface to pography of the prepared crystals 90.

4.3.3. Preformulation studies

These studies are essential for determining chemical and physical characteristics ofdrug substances along with its combination of other excipients. It is the preliminary to develop any of the desired dosage forms. With the help of this preformulation parameters, we can assess the nature and character of the drug and its release.

Someofthepreformulationstudiesarelistedbelow:

Organoleptic evaluation, particle size distribution, bulk and tapped density, diameter, carr's index, hausners ratio, angle of repose, drug-excipient compatibility studies 91.

4.3.4 Organolepticcharacteristics:

This can be evaluated by color, odor, taste, and elegance of the tablet, its size and shape, surface texture, unique identification marks etc were usually done by physicalexamination. The results were given in table 4.3.

Table: 4. Organoleptic properties of prepared tablets of and empagliflozin

S.no.	Properties	Observation
1.	Description	Roundinshape
2.	Colour	White
3.	Taste	Tasteless
4.	Odour	Odourless
5.	Elegance andsurfacetextur	Smooth

4.3.5 Flowproperties

i. (Angleofrepose):

It is defined as maximum possible angle obtained between surface of pile of powderand the horizontal plane. 92,93 Through fixed funnel method angle of repose can be determined. Funnel is fixed at a specific height (2.5cm) on to a burette stand. The sample of powder is allowed to pass through the funnel allowing it to form a pile. Nomoregranules are added when the pile reaches the edge of the funnel. This region is

encircledtomeasureradius. The same procedure is repeated for three more times and the average value is noted. It can be calculated by using the following equation

Angle of repose $(\Theta) = Tan^{-1}$

(h/r)Where,h=heightofpiler=radiusof

thebaseofthepileo=angleofrepose

Table: 4Angle of repose and corresponding flow properties

Angleofrepose	Flowproperty
<25	Excellent
25-30	Good
30-40	Passable
>40	VeryPoor

Determination of bulk density:

Sufficient amount of powder (W) is weighed and is poured into a measuring cylinderwhich is graduated and volume (V_0) can be measured along with bulk density by following formula 92 ,

Bulk density(BD)=Weightofthepowder/volume ofpowder

Tappeddensitydetermination:

Sufficient amount of powder (W) is weighed and is poured into a measuring cylinderwhich was fixed to the 'tapped densitometer' and tapped for number of times (500,750 and 1250) until the variation in the volume after consecutive tappings was \square 2%which is graduated and volume (V₀). The final reading was represented by (V_f). Thetapped density, carr's index, hausner's ratio were calculated using the volume ofblend. 92

Tapped density= W/V_fg/ml

Carr'sindexorcompressibilityindex:

Carr's index is also known as compressibility. It is indirectly related to the relativeflow rate, cohesiveness and particle size. It is simple, fast and popular method ofpredictingpowderflowcharacteristics. 92,93

Carr sindex(%) =[(Tappeddensity-bulkdensity)/tappeddensity]X100

Table5: Carr's index and corresponding flow properties

Flowcharacter
Excellent
Good
Fairtopassable
Poor
Verypoor
Veryverypoor

Hausner'sratio: Theflowproperties of powder are indicated and it is ratio of tapped density to bulk density 94,95.

Hausner'sratio = Tapped density/bulkdensity

Table6: Limitsofhausner'sratio

Hausner'sratio	Typeofflow
<1.25	Goodflow
1.26-1.34	Passableflow
1.35-1.45	Poor
1.46-1.59	Verypoor

4.4 Finaltabletcompression(directcompression):

In this process, the optimized sustained release granules were introduced initially in tothe die cavity and later a slight pre-compression was done so as to distribute the layersuniformly.

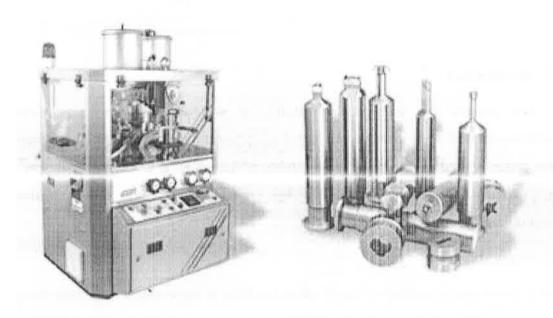


Fig5: Tabletpunching machine

4.5 Postcompressionstudies

Evaluation of tablets:

Theevaluationincludesthediameter, weight, shape, thickness, size, hardness, friability, floating log time and *invitro*-dissolution characters. 96,97,98,99

4.5.1 Weight variation: The tablet weight was determined to verify that a tabletwhich is being weighed is according to the prescribed criteria. 20 tablets were weighedand average weight was calculated to its individual weight as per the USP weightvariation testprocedures. The weighed tablets should meet the USP limits not exceeding more than 2 tablets of its individual weights and no single tablet should differ by more than 2 times the percentage limit. USP limits of % deviation of tablet are shown below.

Table7:Limitsfortabletweightvariationtest (USP29-NF34)

Averageweightoftablet(mg)	%Differencepermitted
130orless	±10%
From130-324	±7.5%
> 324	±5%

4.5.2 Hardnesstest

Hardness test ensures the stability and ability to withhold the stress or shear strengthwhilemechanicalshocksoccurredwhilepackaging,handlingandtransportation.Monsan to hardness tester is used to determine the hardness of the tablet. It is denoted by kg/cm². Themean values were determined by considering 3 tablets that were pickedrandomly from the batch.

4.5.3 Friability

The friability test is almost similar to that of tablet hardness in the evaluation of withholding capability of the tablet prepared. Roche friabilator is the instrument used for determine friability. The tablets were weighed and kept in the apparatus andwere subjected to rotation at an rpm of 100. The tablets were weighed after therevolutions and compared to its initial weight. Friability is expressed in %.

Limits: weight loss of not more than 1% of the original

weight. The percentage friability was calculated using the formula:

% friability =
$$(W_1-W_2) / W_1 X$$

100W₁=Initialweight

W₂=Finalweightoftablet

iv*In-vitro* dissolution studies: The dissolution criteria used for studying the drugreleasefromthetablets:

TABLE 8: In-vitro dissolution parameters for empaglificzin

Apparatus	USP 26apparatustypeII(Paddle)		
Agitationspeed(rpm)	75rpm(for empagliflozin)		
Medium	0.1NHCland7.5 pHphosphatebuffer		
Volume	900ml		
Temperature	$37.0 \pm 0.5^{\circ}$ C		
Time	0.5,1,2, 4,6, 8,10and12hours		
Wavelengths	276nmand272nm		

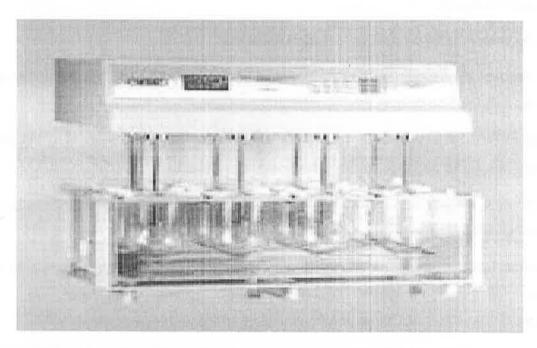


Fig 6: USP26 apparatus type II (paddle)-dissolution apparatus.

4.6 Kinetic-models

Kineticmodelsdepicts the drugreleaserate kineticsof preparedformulations withrespecttodissolutionprofile,namely,zeroorder,firstorder,andhiguchirespectively.

$$Q_t = Q_0 + K_0 t$$
(1)

where,Qt-amountofdrug releasedattimet;

 $\label{eq:Q0-amount} Q_0\mbox{-amount of drug in the solution at } t = 0, (usually, Q0 = 0) \mbox{and } K_0\mbox{-}$

zeroorderreleaseconstant.

 $logQ_1 = logQ_{\alpha} + (K_1/2.303)t$ (2)

 Q_{α} -totalamountofdruginthematrixand K_1 -

thefirstorderkineticconstant.

$$Q_l = KH.t^{1/2}....(3)$$

where, KH-Higuchirateconstant.

Further, to characterize the mechanism of drug release from matrices, dissolution datawere analyzedusingthe equationproposedbyKorsmeyerandPeppas.

$$Q_{(t-l)}/Q_{\alpha} = KK(t-l)n$$
(4)

where, Qt-theamountofdrugreleasedintimet,

l-lag time(*l*=2 hours)

 Q_{α} -totalamountofdrugthatmustbereleasedatinfinitetime

KK - constant comprising the structural and geometric characteristics of the tablet, and istherelease exponent indicating the type of drugrelease mechanism.

To determine the exponent n, points in the release curves where Q $_{(t-1)}/Q_{\alpha}>0.6$, wereonlyutilized.Ifnreachesto0.5,the releasemechanismisfickian.

If n reaches to 1, the release mechanism is zero order and on the other hand if 0.5 < n < 1, non-fickian (anomalous) transport can be obtained.

Anomalous (non-fickian) transportusually refers todrug releaseby addingbothdiffusion and erosion of the polymeric matrix. The criteria suggested in the selection of 'bestmodel'' was the one with the highest coefficient of determination (r²)¹⁰¹.

Table: 9 Interpretation of diffusional release mechanisms

Releaseexponent(n) Drugtransportmechanism	
0.45≤n	Fickiandiffusion
0.45 <n<0.89< td=""><td>Non-fickiantransport</td></n<0.89<>	Non-fickiantransport
0.89	CaseIItransport
n>0.89	Supercase IItransport

4.7 OptimizationOfFormulationParameters

Preparation of spherical agglomerates are affected by many process variables and needs to be optimized for optimal response. The process variables like stirring speed, stirring time and rate of addition of drug solution identified on the basis of above preliminary trials were fixed and kept constant throughout the study.

Rateofadditionofdrugsolution-

1ml/minStirringspeed-1000rpm

Stirringtimeafteradditionofentiredrugsolution-40min

Inthepresentstudy,theindependentvariableslikevolumeof dichloromethane,volume of water and % of chloroform in dichloromethane were chosen based on theresultsobtainedfromthepreliminarystudies conducted.

4.7.1 Selection ofbestbatch

During the optimization of a multivariable process, such as spherical agglomeration, the responses were taken into consideration in order to produce a product of desired characteristics.

4.8 Stabilitystudies

The selected formulation was subjected to stability studies as per ICH guidelines. ThetabletswerepackedinHDPEbottlesandwerestored at following conditions.

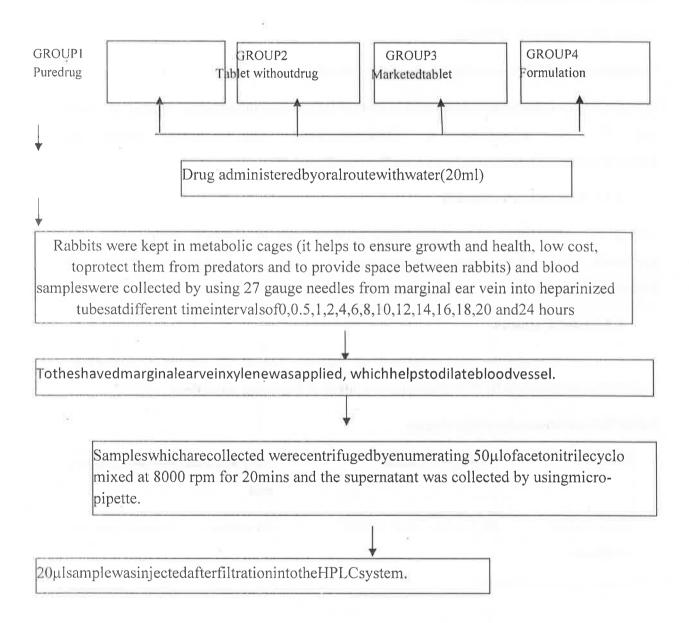
Table 10: Conditions of stability studies

Storagecondition	Minimumtimeperioddatacove	
	red	
40°C±2°C/75%±5%RH	4months	
	40°C±2°C/75%±5%RH	

4.9 In-vivoevaluation of the prepared tablets:

Thepharmacokineticparameterswereestimatedforthein-

vivostudyfortheoptimizedformulationandmarketedtabletforcomparisionofthe parameters.


 $\label{eq:parameters} Pharmacokinetic parameters were used for determination of parameters such as maximum concent \\ ration of serum (C_{max}), time \\ to reach the maximum conc. of$

serum(T_{max}), area obtained under the plasma-concentration time curve (AUC), volume distribution (V_d), half-life ($t_{1/2}$), mean residence time (MRT) and clearance (Cl_T).

of

4.9.1. Groupsforthein-vivo study:

*In- vivo*studywasperformed,makingfourgroupsofhealthyalbinorabbits.Eachgroupconsistsoffourr abbits (n=4).

 $Fig 7:\ Flow chart representation of preparation of sample solutions$

4.9.2. Experimental

methodology HPL Canalytical methodd

evelopment

Glipizide andempagliflozincontentpresentin the plasma was estimated by using HPLC method and a calibration curve was plotted. 107

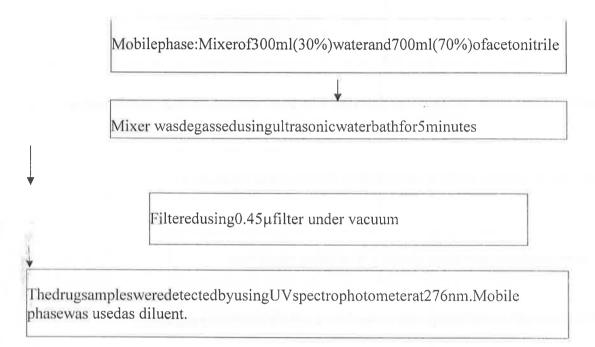


Fig8:FlowchartrepresentationofHPLCanalyticalmethoddevelopmentforglipizide

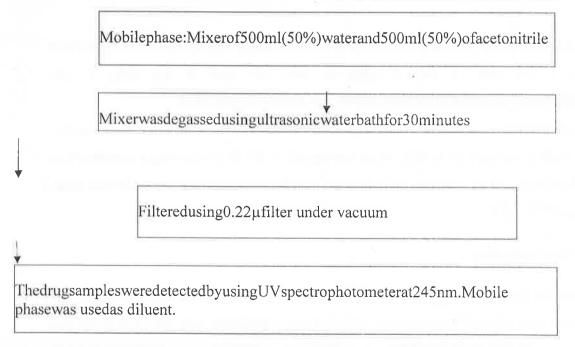


Fig 9: Flow chart representation of HPLC analytical method development for empagliflozin

Preparationofstandardsolutionofempagliflozin

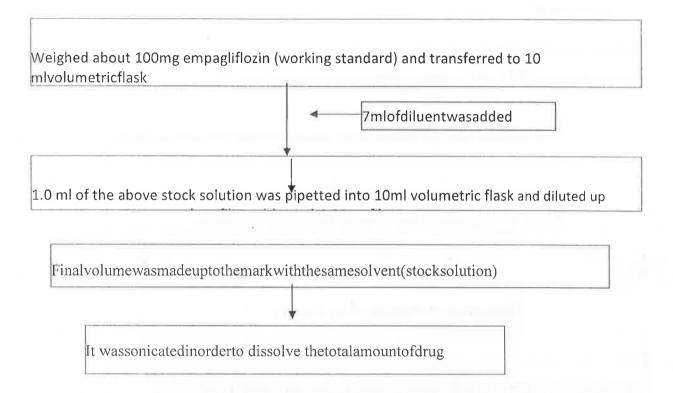


Fig. 11: Flowchartrepresentation of preparation of standard solutions for empagliflozin

4.9.3. Analyticalinstrumentandmethod

HPLC (2695 seperation module), with PDA detector utilizing INERTSIL ODS C_{18} column (250 mm x 4.6 mm, 5 μ m-for glipizide and 150 mm X 4.6 mm, 5 μ m-forempagliflozin)reversephasechromatographyisappliedforestimation of drugs. Columntempalong withinstrument tempiscontrolled at normal temperature. Acetonitrile: phosphate buffer was used as mobile phase having pH 3 (50:50 v/v), having a constant flow rate of 1.5 ml/min, 20 μ l -volume of injection. The detection wavelength was 245 nm, tempmaintained at 20°C ± 2°C.

HPLCmethodvalidation

10μl of sample free blank plasma and glipizide sample solution and 20μl of samplefree blank plasma and empagliflozin sample solution are introduced into the system toknow about the specificity. Byinjecting 20μl solution the chromatograms were developed. The peak area was estimated for each drug solution. The standard graph

was plotted and correlation coefficient was determined. To estimate the inter and intraday precision repeatedly, the same procedure is repeated for 6 times. Robustness, LOD and LOQ were validated simultaneously.

4.9.4. Assesmentofpharmacokineticparameters

To assess the pharmacokinetic parameters of empagliflozin test and control, noncompartmentalmethodwaspreferredwiththehelpofThermoscientificKINETICA5.2so ftware (plasma concentrationvs.timedata).

4.9.5. Statistical analysis

Statistical data was analyzed using graph pad prism 6 software data. Paired t-testwas usedforfindingthe similarity of PK parameters of testand control samplesand a value of p<0.05 was found to be significant and ANOVA was considered toestimate anydifferences PKcriteriainagroup.

V.Results & Discussion

5.1 General characterization of CS-NMM.

Identificationtestsforhydrocolloid

Inference: Theresults proved that the extracted material was hydrophilic innature.

Phytochemical constituents in CS-NMM- identification

Table 11. Phytochemical constituents identified

Tests	Results	
	CS-NMM	
Alkaloids		
Carbohydrates	+	
Flavonoids	+	
Tannins	+	
-Absence	+Presence	

Inference: CS-NMMexhibited the presence of carbohydrates, flavonoids and tannins.

5.1.2.a. Determination of pHofextracted mucoadhesive material

ThepH was determined as 6.5 ± 0.5 .

Inference: The pH of 1%w/v solution of CS-NMM was found to be 6.5. The material extracted was slightly acidic in nature. Hence, the formulations that are prepared by using this polymer can be compatible and will not cause any irritation when administered into the GIT

Table 12.Determination of swelling index of CS-NMM

Table 5.2: Swelling index of NMM

Parameter	Result	
a wa wantoo	NMM	
Swellingindexafter3hr		
Distilledwater	17.37± 0.51	
pH–1.2	15.83± 0.30	
pH-7.4	13.19± 0.47	

Swellingindex= $[(w_2-w_1)/w_1]$

Where, w₁=weightofNMMbeforeswelling, w₂=weightofNMMafterswelling

Inference: The swelling index study revealed that the material absorbs more or lesstentimes ofwaterbyits weight.

5.1.2. e.Meltingpoint determination of CS-NMM

Themeltingpointwasrecordedas339.9°C.

Inference: The high range of melting point i.e. 339.9° C represents that the material isheatstable withinvarious ranges of temperature, hence can be used in different pharmaceutical formulations.

5.1.2.f. Determination of viscosity of 1% w/vCS-NMM.

Table13: Viscosity of 1 %w/vsolution of CS-NMM

Viscosity inpoise
CS-NMM
0.0149
0.0126
0.0083

Inference: It was revealed that as temperature increased, the viscosity of CS-NMMhasbeendecreased.

5.1.2. g.Fouriertransforminfraredspectroscopy(FTIR)

FTIRspectrumwasshownasfig.5.1andinterpretationofdatawasexplainedinthetable5.4.

Fouriertransforminfraredspectroscopy(FTIR)

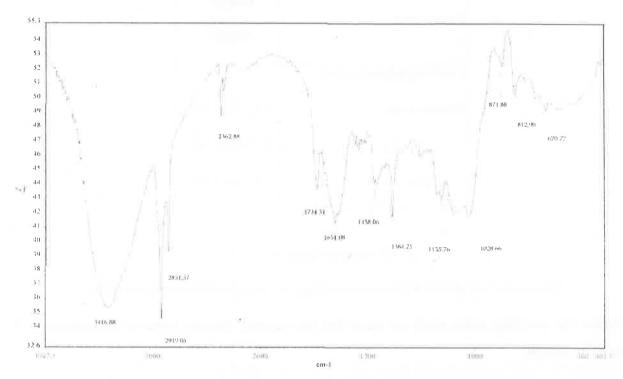
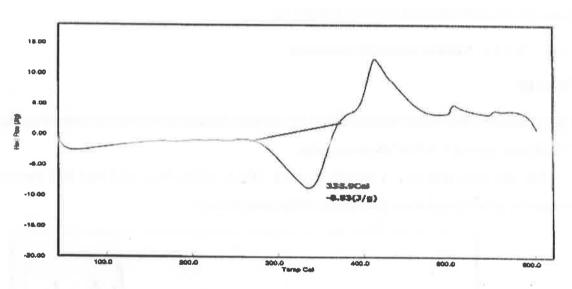


Fig.12. FTIR spectrum of CS-NMMTable5.4:FT-IR dataofCS-

NMM


Characteristicband
N-H(S)
(methylor methylene)
C-H(stretch)
C–H (S)
(Aldehyde)/COOH
C= O (S)
C-H(bending)(CH ₂)
C-H (B)(CH ₃)

1155.76	C-O(S)ether
1028.66	C-O
	(B)(ether/alcohol/esters/anhydrides)
871.88	C–H(OOP)foraromaticring
812.90	
670.77	C-Br/C-I(Outofplane)

Inference: A single band is seen at 3416.88cm⁻¹which is assigned to the stretching of H-bonds to the amide group of the adjacent intra-sheet chain. The strong bands are seen in the range of 1458.06 exhibits the characteristic resemblance with the polysaccharides.

5.1.2.h. Differentialscanningcalorimetry(DSC)

Fig.13:DSC spectrumofCS-NMM

Theoptimum temperaturerequiredtomelttheCS-NMM wasfoundtobe338.9°C.DSC spectrumismentionedinFig.5.2

Inference: As temperature increased the heat flow also increased, indicating that theweightloss has occurred. It was depicted by sharp drop in the curve at 338.9° C forthe sample.

5.1.2.i. SolubilitystudiesofCS-NMM

Thematerial(CS-NMM)wasfoundtobefreelysolubleinhotwater. The resultof solubility studies is shown in table 5.5

Table14:SolubilityofCS-NMM

Solventsused	Solubility of naturalmucoadhesivemate rials	
ColdWater	*	
Hotwater	+	
n-Hexane	-	
Methanol	-	
Ethylacetate	-	
Ethanol		

Soluble-(+);Insoluble-(-)

Inference: The solubility has been checked by using different polar and non-polarsolvents. It was found that the substance was soluble in hot water. It was practically insoluble innon-polar solvents such as ethanol, benzene, hexane, etc.

5.1.2.j. Nuclearmagneticresonance

¹³CNMR

ThemeasuredNMRspectrumwasinterpretedandreportedtoconfirmthepresenceofpolysaccharides. The ¹³ C-NMRspectrum of CS-NMMisshowninfig.

5.3. The spectrum depicts C-1 signals at 105.4, 103.4, 100.0, 99.3, 93.6 and 90.5 ppmthat are assigned to galactose, glucose and xyloseresidues respectively.

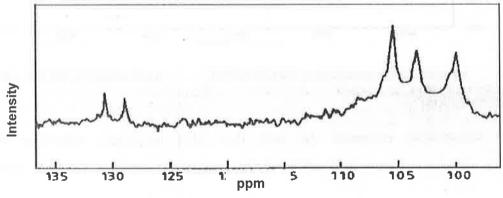


Fig.14: 13 C-N.M.Rspectrumof CS-NMM

¹HNMR

¹The ¹H-NMRspectrumofCS-NMMisshownin Fig.5.4.

Inference: The protons of ¹H–NMR spectrum is depicted in table 5.6. From this datawe can have an evidence of polysaccharides in the extracted material which is furtherconfirmedbyrepeatedOHandCOOHgroups.

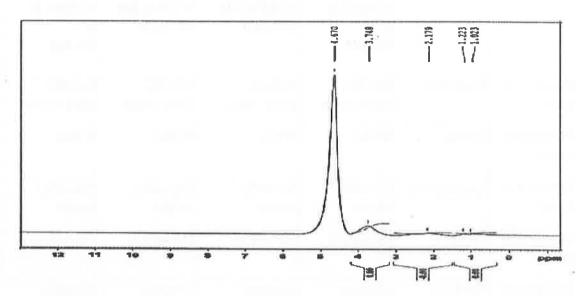


Fig. 15: ¹H - NMR spectrum of CS-NMMTable 5.6: Dataof ¹H-

NMRspectrumforCS-NMM

Chemicalshift (PPM)	Natureofprotons	Approximatenumber of protons	
1.023	R-CH ₃	1	
1.223	$R-CH_2-R$ 1		
2.179	R-(C=O)-CH ₃ / R ₂ -N-CH ₃	2	
3.748	R-CH ₂ -X (X-Cl, Br, I) /R-O-CH ₂ -R/ R-(C=O)-O-CH ₂ -R/ HO-CH ₂ -R		
4.670	R ₂ -C=CH ₂	2	

Inference: The chemical composition of the CS-NMM was identified by the ¹³Cand ¹HNMR. The spectrum is shown in the fig. 5.3 to 5.4. The report suggests the

presence of OH and COOH groups. The IR and NMR spectrums howed the presence of polysaccharides in CS-NMM.

5.1.3. Stabilitytestingstudies

Table:15. PhysicalstabilitystudiesofextractedCS-NMM

Model	Parameter	25°C± 2 °C/60%R H ± 5%RH	40 °C ± 2 °C/65%RH ±5%RH	40°C±2 °C/75%RH ±5%RH	8°C± 2 °C/60%R H ± 5%RH
Powderede xtract	Solubility	Soluble inhot water	Soluble inhot water	Soluble inhot water	Soluble inhot water
Powderede xtract	Colour	White	White	White	White
Powderede xtract	Appearance	Smoothp owder	Smoothp owder	Smoothp owder	Smoothp owder
Powderede xtract	Odour	Odourless	Odourless	Odourless	Odourless
Powderede xtract	Sterilitys tudies	Absence ofmicrobial growth	Absence ofmicrobial growth	Absence ofmicrobial growth	Absence ofmicrobial growth

${\bf 5.2\ Premilinary studies for the preparation of spherical agglomerates}$

5.2.1 Selection of bridging liquid, poor solvent

andgoodsolventTable 16:Solubilitystudies ofdrugs

Observations	Observations
	O DOG 7 HEIGHS
Soluble	Soluble
Soluble	Slightlysoluble
Insoluble	Sparinglysoluble
Insoluble	Sparinglysoluble
Insoluble	Almostinsoluble
Insoluble	Insoluble
	Soluble Insoluble Insoluble Insoluble

From the above studies, dichloromethane was selected as a good solvent (internalphase)while waterisselected as a poorsolvent (externalphase).

5.2.2. Selection of bridging liquids:

Dichloromethane was found to be miscible with chloroform in proportions from 1:1 to1:5, while it was immiscible with glycerine and n-hexane in different proportions. So,chloroformwas selectedasabridgingliquid.

${\bf 5.2.3} Preliminary selection of process parameters affecting the formation of spherical agglomer at escape and the spherical agglomer at each of the spherical agglomer. \\$

Table 17: Preliminary trials for drugs pherical agglomerates

S.No.	Procedure	Observations
1.	100mg of the selected drug was dissolvedin1 ml of dichloromethane. The drug solutionwas added dropwise at a rate of 1 ml/min to50ml of water stirred on a magnetic stirrer at600rpm.	Irregular shaped crystals of drug wereobtainedimmediately.
2.	100 mgofdrugisdissolvedin1mlof dichloromethane. The drugsolution was added dropwise at a rate of 1 ml/min to 50 mlofwater containing 50% v/vofchloroformstirre d on a magnetic stirrer at 600 rpm.	Spherical agglomerates of drugparticleswere obtained.
3.	100 mg of drug is dissolved in 1 ml ofdichloromethane. To this solution 10 mlof chloroform was added. The drug solution was added dropwise at a rate of 1 ml/min to 50 mlof water stirred on a magnetic stirrer at 200 rpm, 400 rpm, 600 rpm and 1000 rpm respective ly.	The results of characterization of product obtained by different batches were shown intable no. 5.8.
4.	100mgofdrugisdissolvedin1mlofdichlorometha ne.To this solution 1ml,3mland5mlofchloroformwas added.Thedrug solution was added dropwise to 50 ml ofwateratarateof1ml/min.stirredona magnetic stirrer at 1000 rpm to find out theoptimumstirringtime(10,20,30and40minutes) afteradditionofentire drugsolution	Theresultsofproductcharacteristics obtainedbyvariousbatcheswereshownint ableno.5.7.

 $phase and stabilized the spherical agglomerates\ of drug formed.$

Table 5.10: Effect of stirring speed on characteristics of spherical agglomerates

Stirringspeed	Characteristics	oftheproduct	
	Sphericity	Matrix	No.ofparticles
400	+	+	+
600	++	++	++
800	++	+	+++
1000	+++	***	++++

From the above results, it was decided to keep the stirring speed at 1000 rpm forfurther studies since spherical agglomerates with good sphericity without any matrixofparticles were obtained at this speed.

Table 18: Effect of %v/vchloroformininternal phase on product characteristics

ml ofchloroform in internalphase	Stirring time afteradditionofdru g solution(minutes)	Sphericity	Particleagglom eration	Matrixofp articles	No.ofparti cles
20	10	+	+	+	+
20	20	+	++	++	+
20	30	++	++	*	++
20	40	++	++	++	++
30	10	+	++	+	++
30	20	++	++	++	++
30	30	+++	++	+	++++
30	40	+++	+++		++++
40	10	+	+	+	++
40	20	+	++	+	++
40	30	++	++	++	++
40	40	++	+++	++	+++

From the above results, the stirring time was fixed at 40 minutes after the addition ofentire drug solution. Stirring time of 40 minutes gave a product with more spherical agglomerates with goodsphericity without any matrix of particles.

5.3 Organolepticcharacteristics:

Table 19: Organole ptic properties of prepared tablets of empagliflozin

S.No.	Properties	Observation
1,.	Description	Roundinshape
2.	Colour	White
3.	Taste	Tasteless
4.	Odour	Odourless
5.	Elegance andsurfacetextur	Smooth

5.7. Preparationandcharacterizationofempagliflozinsphericalagglomerates

A total of 24 formulations were made using different polymers namely caesalpiniaspinosa, HPMC K100M, ethyl cellulose, sodium alginate out of which F1-F12 wereformulated using spherical agglomeration technique and F13-F24 were formulatedwithAPIofempagliflozin

Department of Pharmaceutics

Table 20: Formulation chart

	Sphericalagglomeratesofempagliflozin	gglomer	atesofe	mpaglifl	ozin								EmpagliflozinAPI	iflozinA	.PI									
Ingredients(mg)	Ē	E	E3	75	<u> </u>	F6	F7	22	F3	F10	FII	F12	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24
Drug	01	10	10	10	10	10	10	10	10	10	10	10	10	10	01	01	10	10	10	10	10	10	10	10
MCC	128.5	118.5	108.5	128.5	118.5	108.5	128.5	118.5	108.5	128.5	118.5	5.801	128.5	118.5	108.5	128.5	118.5	108.5	128.5	118.5	108,5	128.5	118.5	108.5
Caesalpiniaspinosa	10	20	30	E.	Ď.	Ē	ķ	15	tš	Ü	Į.	ij	10	20	30	<u>ti</u>	6	T)	Ü	T.	til	0	Ü	t)
HPMCK100M	ï	Î]#	10	20	30	Ü.	1	i i	Ţ	ļ.	19	Ĩ	ij	ī	10	20	30	9	1		21 to 10 to	()	Ä
Sodiumalginate	Ĵ	ī	¥		Ť	1	10	20	30				Ĥ	ŧ	J.	X.	r	ï	10	20	30			
Ethylcellulose	Û	I,	10)	- 1	ĵ.	Į.	()	E	É	10	20	30	Ų.	E	11	<u> </u>	L	L.	6	ij.	Ε.	10	20	30
Mgstearate	1.5	5.1	5.1	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	5.	1.5	5.	7.	5.1	1.5	1.5	1.5	1.5	5	1.5	1.5	5.
Total(mg)	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150	150
			,																					

The salient features of the above chart reveals that the polymers are used in the formulation because they prolong the drug release which furthersuits the rate limiting characteristics of the drug, MCC is used to improve the bulkness of the tablet. The tablets were directly compressed to itstotalweightof150mg. Thepreparedtabletswerefurtherevaluatedforitpre-compressionandpostcompressionparameters.

5.7. Micromeritic properties

All the prepared formulations of empagliflozin spherical agglomerates and API were subjected to preformulation studies and the values obtained were within the limits. The values were given in table: 5.62.

Table 21: Preformulation studies for empagliflozin

Formulatione	Bulkdens ity	Tappedd ensity	Carr'sind ex	Hausnersr	Angleofrep ose	Diameter(
ode	(g/cm^3)	(g/cm^3)	(%)	atio	(θ)	mm)
F1	0.33±0.01	0.38±0.05	13.33±0.11	1.15±0.02	33.12±0.11	7.01±0.02
F2	0.35±0.03	0.38±0.03	6.98±0.09	1.08±0.06	27.32±0.12	7.08±0.01
F3	0.31±0.01	0.35±0.04	10.42±0.16	1.12±0.08	31.11±0.11	7.03±0.03
F4	0.33±0.05	0.37±0.05	10.87±0.07	1.12±0.07	31.52±0.16	6.92±0.01
F5	0.36±0.02	0.38±0.08	7.14±0.07	1.08±0.03	27.69±0.15	7.11±0.02
F6	0.32±0.06	0.38±0.02	14.89±0.12	1.13±0.05	35.28±0.09	6.8940.03
F7	0.35±0.02	0.38±0.05	9.30±0.03	1.10±0.01	29.31±0.17	6.92±0.02
F8	0.33±0.03	0.37±0.06	8.89±0.06	1.10±0.08	29.17±0.16	7.14±0.04
F9	0.37±0.01	0.43±0.01	14.63±0.17	1.17±0.06	34.63±0.19	7.06±0.02
F10	0.32±0.09	0.36±0.08	10.64±0.16	1.12±0.09	31.88±0.14	6.95±0.02
F11	0.38±0.05	0.43±0.02	10.26±0.11	1.11±0.03	30.51±0.13	7.02±0.03
F12	0.33±0.04	0.38±0.04	11.11±0.12	1.13±0.07	32.27±0.06	7.04±0.01
F13	0.41±0.03	0.47±0.02	13.51±0.16	1.16±0.06	33.71±0.03	7.19±0.02
F14	0.43±0.06	0.48±0.01	11.43±0.09	1.13±0.04	32.64±0.13	6.85±0.01
F15	0.31±0.03	0.36±0.06	12.50±0.07	1.14±0.01	33.7±0.07	7.13±0.03
F16	0.33±0.05	0.37±0.04	10.87±0.02	1.12±0.07	31.29±0.02	6.91±0.02
F17	0.27±0.01	0.30±0.05	10.71±0.06	1.12±0.02	31.75±0.04	7.03±0.01
F18	0.33±0.04	0.38±0.04	13.33±0.03	1.15±0.05	33.95±0.03	7.09±0.01
F19	0.36±0.01	0.43±0.07	16.67±0.05	1.20±0.03	37.27±0.13	7.15±0.03
F20	0.39±0.06	0.45±0.09	13.16±0.07	1.15±0.06	33.62±0.02	7.13±0.01
F21	0.48±0.02	0.58±0.03	16.13±0.05	1.19±0.03	36.38±0.03	7.03±0.02
F22	0.43±0.03	0.50±0.06	14.29±0.03	1.17±0.07	34.96±0.11	6.92±0.04
F23	0.41±0.01	0.45±0.05	10.81±0.01	1.12±0.04	31.69±0.15	6.89±0.01
F24	0.35±0.02	0.39±0.06	11.63±0.06	1.13±0.03	32.56±0.14	7.05±0.03

Inference: In pre-compression parameters the bulk density of empagliflozin it was within the range of 0.27 ± 0.01 - 0.48 ± 0.02 . Carr's index was found to be within therange of 6.98- 16.67 ± 0.09 , hausner's ratio was in the range 1.08- 1.18 ± 0.06 . Angleofreposewas found to be within the range 1.08- 1.18 ± 0.06 .

was found to be in passable limits) and diameter was found to be within the range 7.01- 7.15 ± 0.01 .

Postcompressionparameters

All the prepared formulations of empagliflozin spherical agglomerates and API were subjected to post compression studies and the values obtained were within the limits. The values were given in table: 5.63.

Table 22: Postcompression studies for empagliflozin

Formulatione	Weight Variation(Thickness(Hardness(Friability(Drugcontent(
ode	%)	mm)	Kg/cm ²)	%)	%)
F1	Pass	2.52±0.06	8.23±0.11	0.32±0.01	96.01±0.14
F2	Pass	2.57±0.01	8.10±0.02	0.15±0.05	96.82±0.18
F3	Pass	2.49±0.04	8.31±0.05	0.41±0.03	99.85±0.13
F4	Pass	2.52±0.08	8.17±0.02	0.27±0.04	97.03±0.21
F5	Pass	2.55±0.06	7.96±0.07	0.35±0.02	97.05±0.16
F6	Pass	2.57±0.04	8.21±0.03	0.16±0.04	97.11±0.18
F7	Pass	2.52±0.02	8.13±0.06	0.24±0.02	97.36±0.13
F8	Pass	2.54±0.07	8.31±0.03	0.12±0.05	97.28±0.13
F9	Pass	2.46±0.02	7.89±0.07	0.05±0.03	98.31±0.19
F10	Pass	2.57±0.01	8.06±0.03	0.26±0.06	96.29±0.13
F11	Pass	2.51±0.07	7.94±0.02	0.36±0.04	97.69±0.16
F12	Pass	2.48±0.03	8.16±0.01	0.41±0.03	97.85±0.16
F13	Pass	2.46±0.01	8.32±0.06	0.28±0.06	97.31±0.18
F14	Pass	2.55±0.06	8.16±0.11	0.22±0.04	98.03±0.14
F15	Pass	2.53±0.04	8.17±0.14	0.16±0.07	99.56±0.13
F16	Pass	2.46±0.01	8.25±0.08	0.19±0.04	96.93±0.17
F17	Pass	2.42±0.03	8.17±0.03	0.07±0.05	97.52±0.14
F18	Pass	2.51±0.02	8.35±0.02	0.31±0.03	97.67±0.17
F19	Pass	2.47±0.07	7.8±0.01	0.39±0.05	98.34±0.14
F20	Pass	2.56±0.04	8.09±0.03	0.16±0.04	98.52±0.18
F21	Pass	2.39±0.02	8.28±0.04	0.26±0.04	99.34±0.14
F22	Pass	2.55±0.01	8.35±0.01	0.24±0.02	96.04±0.19
F23	Pass	2.41±0.04	7.86±0.04	0.17±0.01	96.08±0.21
F24	Pass	2.52±0.01	8.19±0.07	0.12±0.03	96.38±0.27
	All the second s				

Inference:Inpostcompressionparameters the weight variation for all the formulations were found to be within the limits. The thickness was in the range of

2.39mm -2.57mm±0.04.Hardnesswasfoundtobeintherangeof7.8-8.35kg/cm²

 ± 0.01 , friability was found to be in the range of $0.05-0.41\pm 0.03\%$ and drug content was found to be in the range of $96.01-99.85\pm 0.21\%$.

5.8. Dissolutionstudies and kinetic studies for empagliflozin formulations

5.8.1. Dissolutionstudies for empagliflozin formulations:

The prepared formulations were subjected to dissolution studies for F1-F12 formulations

Table23: In vitro drugrelease profile for F1-F12

time hrs	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	FI1	F12
0 hrs	0	0	0	0	0	0	0	0	0	0	0	0
0.5hrs	8	9	12	6	8	9	5	., 7	10	5	9	7
1 hrs	18	15	21	17	18	15	16	18	13	16	18	15
2 hrs	25	22	32	28	26	24	27	22	25	22	26	27
4 hrs	38	41	46	39	40	37	33	41	35	40	36	33
6 hrs	55	48	61	57	45	52	56	47	50	54	44	56
8 hrs	59	67	72	60	65	68	58	62	69	64	63	60
10 hrs	60	80	87	64	75	83	62	65	81	78	83	75
12 hrs	72	86	97	68	81	90	70	77	85	81	88	90

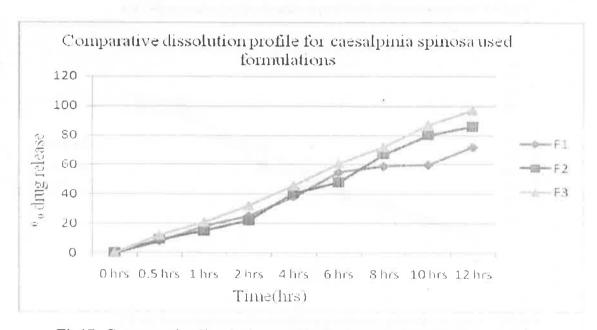


Fig17: Comparative dissolution profiles for formulations F1-F3

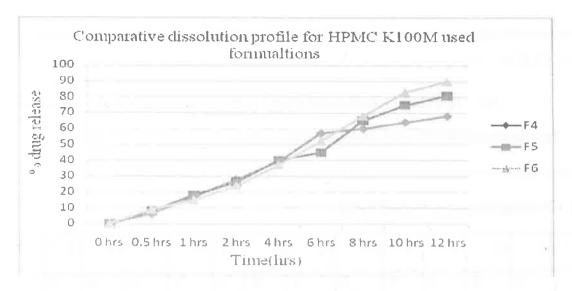


Fig18: Comparative dissolution profiles for formulations F4-F6

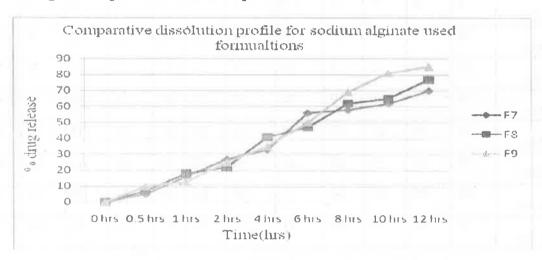


Fig19: Comparative dissolution profiles for formulations F7-F9

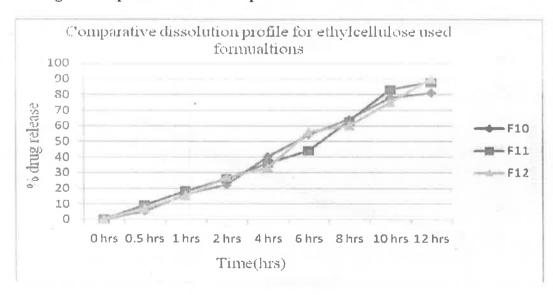
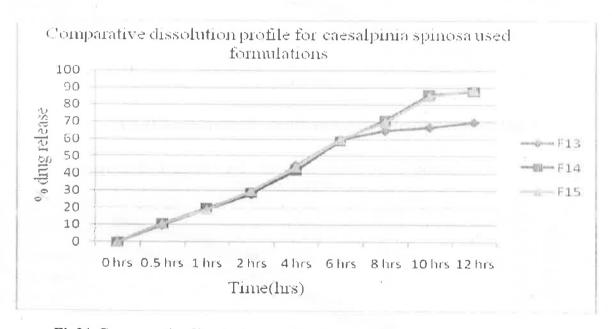



Fig20: Comparative dissolution profiles for formulations F10-F12

 $Table 24: {\it Invitro} drug release profile for formulations F13-F24$

time	F13	F14	F15	F16	F17	F18	F19	F20	F21	F22	F23	F24
hrs												
0 hrs	0	0	0	0	0	0	0	0	0	0	0	0
0.5hrs	10	11	11	5	8	9	7	9	8	4	5	9
1 hrs	19	20	19	18	15	12	11	15	17	15	13	11
2 hrs	28	29	30	25	22	27	20	26	25	28	20	25
4 hrs	45	42	44	39	35	40	30	35	41	34	36	38
6 hrs	60	59	60	55	50	45	49	55	50	45	56	52
8 hrs	65	71	70	69	60	63	53	62	69	50	65	60
10 hrs	67	86	85	72	84	80	58	67	72	53	73	72
12 hrs	70	88	89	79	84	83	66	75	76	67	78	75

 $Fig 21: Comparative dissolution profiles\ for formulations F13-F15$

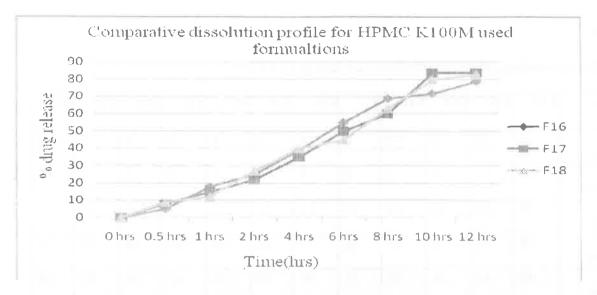


Fig22: Comparative dissolution profiles for formulations F16-F18

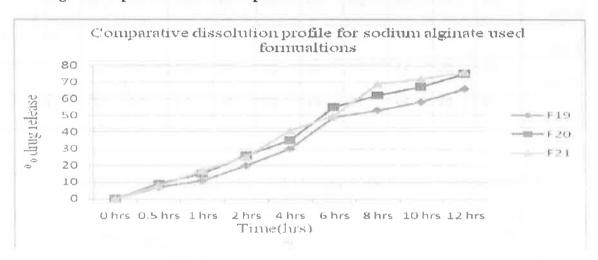


Fig23:Comparative dissolution profiles for formulations F19-F21

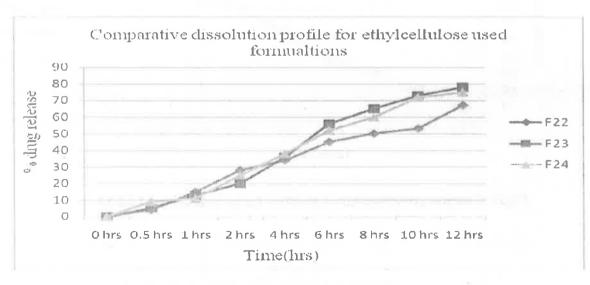


Fig24: Comparative dissolution profiles for formulations F22-F24

The prepared empagliflozin formulations were subjected to dissolution studies and the following represents first order kinetics for F1-F24 formulations

1		
		♠ F1
		III F2
		£5.
0	. 5	15
	Time(hrs)	

•	2	1.944483	1.897627	1.832509	1.732394	1.591065	1.447158	1.113943	0.477121	0.944
F2 F3	2	1.959041	1.929419	1.892095	1.770852	1.716003	1.518514	1.30103	1.146128	0.939
F1	2	1.963788	1.913814	1.875061	1.792392	1.653213	1.612784	1.60206	1.447158	096.0
Time(hrs)	0 hrs	0.5hrs	1 hrs	2 hrs	4 hrs	6 hrs	8 hrs	10 hrs	12 hrs	\mathbb{R}^2

Fig24 First orderplotF1-F3

Table24:FirstorderdataF1-F3

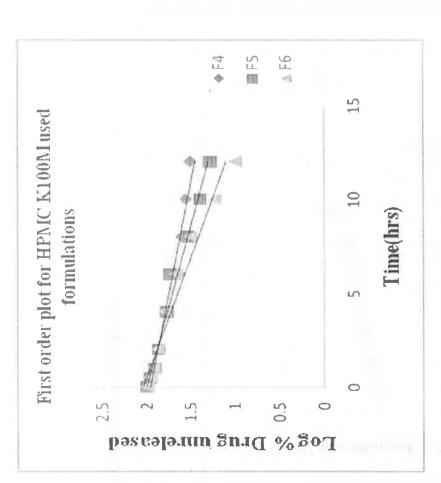


Fig25 FirstorderplotF4-F6

F6	2	1.959041	1.929419	1.880814	1.799341	1.681241	1.50515	1.230449	1	0.958
F5	2	1.963788	1.913814	1.869232	1.778151	1.740363	1.544068	1.39794	1.278754	0.980
F4	2	1.973128	1.919078	1.857332	1.78533	1.633468	1.60206	1.556303	1.50515	0.956
l ime(hrs)	0	0.5	1	2	4	9	∞	10	12	\mathbb{R}^2

Table25:FirstorderdataF4-F6

Time(hrs)		
	F F 8 9 6 9 6 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9	
ate used		15
First order plot for sodium alginate used formulations		10 (hrs)
plot for sodium formulations		5 Time(hrs)
First order	5 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0
	Cog % Drug unreleased	

1.954243

1.968483

1.977724

0.5

F9

F8

F7

2

7

0

1.939519

1.913814

1.924279

1.875061

1.892095

1.863323

 α

1.812913

1.770852

1.826075

4

1.69897

1.724276

1.643453

9

1.491362

1.579784

1.623249

 ∞

Table 26:FirstorderdataF7-F9

Fig26 FirstorderplotF7-F9

0.975

0.984

0.967

 \mathbb{R}^2

1.176091

1.361728

1.477121

12

1.278754

1.544068

1.579784

10

	+ F10	
First order plot for e hylcellulose used formulations		15
dot for e'hylcel formulations	The second	5 0 Time(hrs)
order plot		Time
Histo	2.5	0

1.929419

1.913814

1.924279

1.826075

1.80618

1.778151

4

1.863323

1.869232

1.892095

 \sim

1.643453

1.748188

1.662758

9

1.60206

1.568202

1.556303

00

1.39794

1.230449

1.342423

10

1.079181 0.933

1.278754

12

0.660

 \mathbb{R}^2

0.919

1.968483

1.959041

1.977724

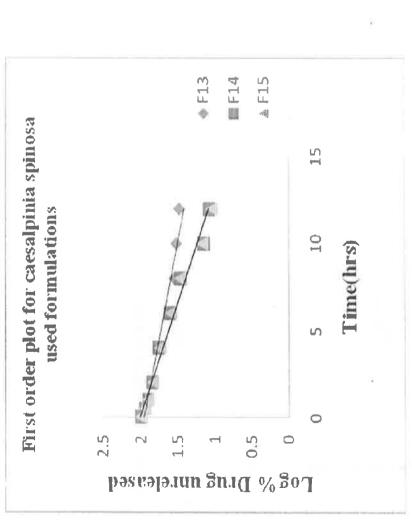
0.5

7

0

2

F12


F11

F10

Time(hrs)

Table27:First orderdataF10-F12

Fig27 First orderplot F10-F12

Time(hrs)

1.94939

1.94939

1.954243

0.5

0

F15

F14

F13

1.908485

1.90309

1.908485

1.845098

1.851258

1.857332

2

1.748188

1.763428

1.740363

1.60206

1.612784

1.60206

9

Table28:FirstorderdataF13-F15

Fig28 FirstorderplotF13-F15

0.979

0.975

0.946

 \mathbb{R}^2

1.041393

1.079181

1.477121

12

1.176091

1.146128

1.518514

10

1.477121

1.462398

1.544068

00

			+F16	* F17	2		
K100Mused							15
First order plot for HPMC K100M used formulations				ZI III			5 10 Time(hrs)
First order pla	<u>\$</u> -		7				0 5 Ti
	2.5	2	٠. ت	H	0.5	0	
		pəscə	anurel	Drug	% 30 T		

Fig29 FirstorderplotF16-F18

F18	2	1.959041	1.944483	1.863323	1.778151	1.740363	1.568202	1.30103	1.230449	0.963
F17	2	1.963788	1.929419	1.892095	1.812913	1.69897	1.60206	1.20412	1.20412	0.936
F16	2	1.977724	1.913814	1.875061	1.78533	1.653213	1.491362	1.447158	1.322219	0.992
Time(hrs)	0	0.5	-	2	4	9	000	10	12	\mathbb{R}^2

Table29:FirstorderdataF16-F18

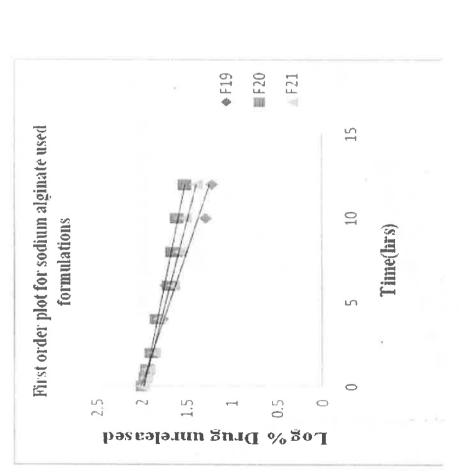


Fig30 FirstorderplotF19-F21

Time(hrs)	F19	F20	F21
0	2	2	2
0.5	1.959041	1.968483	1.959041
1	1.944483	1.94939	1.929419
2	1.863323	1.90309	1.869232
4	1.778151	1.845098	1.812913
9	1.740363	1.70757	1.653213
00	1.568202	1.672098	1.579784
10	1.30103	1.623249	1.518514
12	1.230449	1.531479	1.39794
\mathbb{R}^2	0.963	0.980	0.991

Table30:FirstorderdataF19-F21

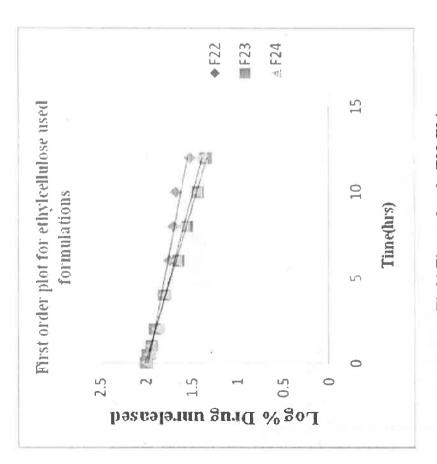
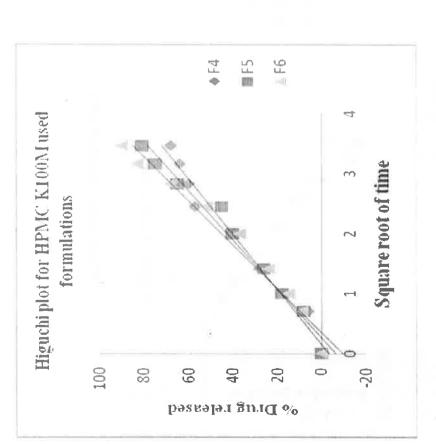


Fig31 FirstorderplotF22-F24

Time(hrs)	F22	F23	F24
0	2	2	2
0.5	1.982271	1.977724	1.959041
1	1.929419	1.939519	1.94939
2	1.857332	1.90309	1.875061
4	1.819544	1.80618	1.792392
9	1.740363	1.643453	1.681241
∞	1.69897	1.544068	1.60206
10	1.672098	1.431364	1.447158
12	1.518514	1.342423	1.39794
\mathbb{R}^2	0.961	0.996	0.994

Table31:FirstorderdataF22-F24


The prepared empagliflozin formulations were subjected to dissolutions tudies and the following represents Higu hikinetics for F1-F24 formulations

) SQRt F1 F2	0 0 0	0.5 0.707107 8	1 18	2 1.414214 25	4 38	6 2.44949 55	8 2.828427 59	10 3.162278 60	12 3.464102 72	R^2 0.983 0.970
Higuchi plot for caesalpinia spinosa used Time(hrs)					#F2	F3		2 4	27.77	Square root of time

	0	6	15	24	37	52	89	83	90	0.967
F6	0	∞	18	26	40	45	65	75	81	926.0
F5	0	9	17	28	39	57	09	64	89	0.977
F4	0	0.707107		1.414214	2	2.44949	2.828427	3.162278	3.464102	
Time(hrs) SQRt	0	0.5		2	4	9	80	01	12	\mathbb{R}^2

Fig33 Higuchi'splot forF4-F6

Table:33Higuchi'sdataF4-F6

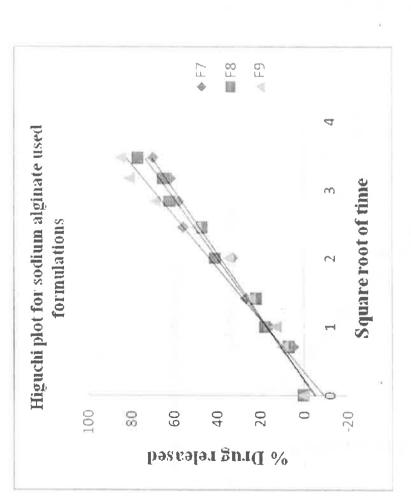


Fig34 Higuchi'splot forF7-F9

Fime(hrs)	SQRt	F7	F8	F9
0	0	0	0	0
0.5	0.707107	5	7	10
1		16	18	13
2	1.414214	27	22	25
4	2	33	41	35
9	2.44949	56	47	50
8	2.828427	58	62	69
10	3.162278	62	65	81
12	3.464102	70	77	85
\mathbb{R}^2		0.972	0.982	0.965

Table: 34Higuchi'sdataF7-F9

×				• F10	# F12		ਚ
ations afions		EI &	F	III VIII			Sanare root of time
niguem prottot empreenutose usea formulations					Z		Souarer
Ē	100	80	09	40	20	0	-20

Fig35 Higuchi'splot forF10-F12

Time(hrs)	SQRt	F10	F11	F12
0	0	0	0	0
0.5	0.707107	5	6	7
1	1	16	18	15
2	1.414214	22	26	27
4	2	40	36	33
9	2.44949	54	44	56
8	2.828427	64	63	09
10	3.162278	78	83	75
12	3.464102	81	88	06
·R ²		0.978	0.950	0.962

Table35Higuchi'sdataF10-F12

Fime(hrs) SQRt 0 0.5 1 2 1 4 4 6 8 2 10 3 2 10 3 4 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 3 10 10	F13 0 0.707107 10 1.414214 28 2.44949 60 2.828427 65 3.162278 67 3.464102 0.0077	F14 0 0 20 29 29 42 42 71 71 88	14 0 0 11 11 11 11 11 42 29 59 88 88 88
---	---	---	---

Fig36Higuchi'splot forF13-F15

Table:36Higuchi'sdataF13-F15

Higuchi plot for HPMC K 100M used formulations formulations formulations + F16 + F16 1 2 3 4 Square root of time	SQRt	0	0.5 0.707107	y-v-	2 1.414214	4	6 2.44949	8 2.828427	3.162278	3.464102	\mathbb{R}^2
	100M used Time(hrs)					+F16	#F17	M LTO			t of time

Fig37Higuchi'splot forF16-F18

2.828427 3.162278 3.464102

F18

F17

F16

Table:37Higuchi'sdataF16-F18

Sed		4	■ F20	# F 2.1	4	
Higuchi plot for sodium alginate used formulations	4		ij ♦ .		8	of time
for sodium a formulations			E.	34	7	Sauare root of time
101 f				The same of	44	Sal

Fig38 Higuchi'splot forF19-F21

Time(hrs)	SQRt	F19	F20	F21
0	0	0	0	0
0.5	0.707107	7	6	∞
1	1	11	15	17
2	1.414214	20	26	25
4	2	30	35	41
9	2.44949	49	55	50
8	2.828427	53	62	69
10	3.162278	58	L 9 - 67	72
12	3.464102	99	75	92
\mathbb{R}^2		0.931	0.944	0.940

Table:38Higuchi'sdataF19-F21

Higuchi plot for ethylcellulose used		Time(hrs)	SQRt	F22	F23	F24
IOTIMUIAUOUS		0	0	0	0	
88		0.5	0.707107	4	2	
		1		15	13	
		2	1.414214	28	20	25
	₱ F22	4	2	34	36	
	F73	9	2.44949	45	99	
	+71	~	2.828427	50	65	
		10	3.162278	53	73	
0 1 2 3 4		12	3.464102	<i>L</i> 9	78	75
Square root of time	*	\mathbb{R}^2		0.975	0.972	0.983

Fig39 Higuchi'splot for F22-F24

Table:39Higuchi'sdataF22-F24

1.322219

1.176091

1.255273

1.079181

0.954243

0.90309

F3

F2

F

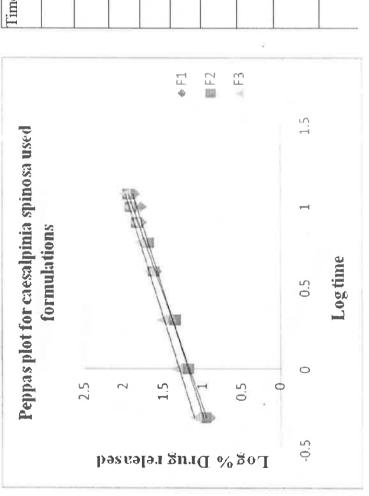
1.50515

1.342423

1.39794

1.662758

1.612784


1.579784

1.78533

1.681241

1.740363

The prepared empagliflozin formulations were subjected to dissolution studies and the following represents peppask in etics for F1-F24 formulations

-0.301030.30103 0.60206 0.90309 0.778151 1.079181 Fime(hrs)

Table 40: Peppas data for F1-F3

Fig40 Peppasplot forF1-F3

966.0

0.995

0.974

 \mathbb{R}^2

1.939519

1.90309

1.778151

1.986772

1.934498

1.857332

1.857332

1.826075

1.770852

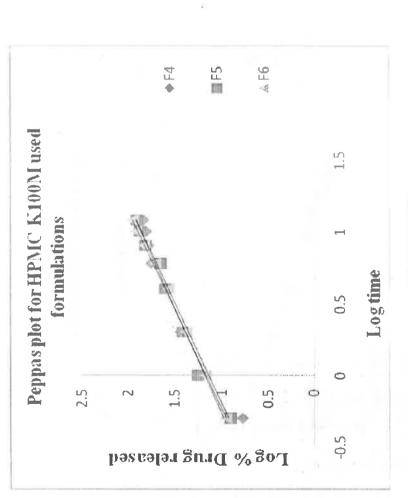


Fig41Peppasplot forF4-F6

Time(hrs)	F4	F5	F6
-0.30103	0.778151	0.90309	0.954243
0	1.2304+9	1.255273	1.176091
0.30103	1.447158	1.414973	1.380211
0.60206	1.591065	1.60206	1.568202
0.778151	1.755875	1.653213	1.716003
0.90309	1.778151	1.812913	1.832509
	1.80618	1.875061	1.919078
1.079181	1.832509	1.908485	1.954243
\mathbb{R}^2	0.946	0.981	0.997

Table41:PeppasdataforF4-F6

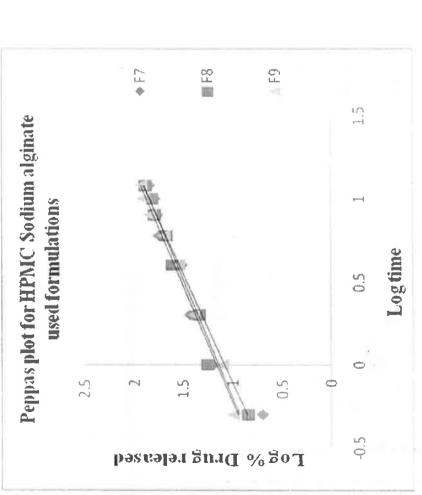


Fig5.91Peppasplot forF7-F9

Time(hrs)	F7	F8	F9
-0.30103	0.69897	0.845098	1
0	1.20412	1.255273	1.113943
0.30103	1.431364	1.342423	1.39794
0.60206	1.518514	1.612784	1.544068
0.778151	1.748188	1.672098	1.69897
0.90309	1.763428	1.792392	1.838849
1	1.792392	1.812913	1.908485
1.079181	1.845098	1.886491	1.929419
\mathbb{R}^2	0.939	0.97	0.988
= ;			

Table42:PeppasdataforF7-F9

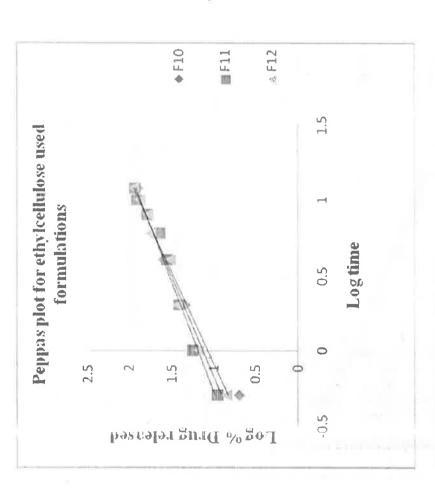


Fig5.92 Peppasplot forF10-F12

Fime(hrs)	F10	F11	F12
-0.30103	0.69897	0.954243	0.845098
0	1.20412	1.255273	1.176091
0.30103	1.342423	1.414973	1.431364
0.60206	1.60206	1.556303	1.518514
0.778151	1.732394	1.643453	1.748188
0.90309	1.80618	1.799341	1.778151
-	1.892095	1.919078	1.875061
1.079181	1.908485	1.944483	1.954243
R-	696.0	0.980	0.982

Table43:PeppasdataforF10-F12

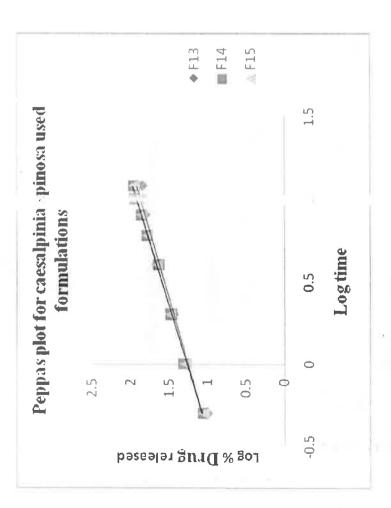


Fig5.93 Peppasplot forF13-F15

Time(hrs)	F13	F14	F15
-0.30103	1	1.041393	1.041393
0	1.278754	1.30103	1.278754
0.30103	1.447158	1.462398	1.477121
0.60206	1.653213	1.623249	1.643453
0.778151	1.778151	1.770852	1.778151
0.90309	1.812913	1.851258	1.845098
7	1.826075	1.934498	1.929419
1.079181	1.845098	1.944483	1.94939
\mathbb{R}^2	876.0	0.994	766.0

Table44:Peppasdata-F13-F15

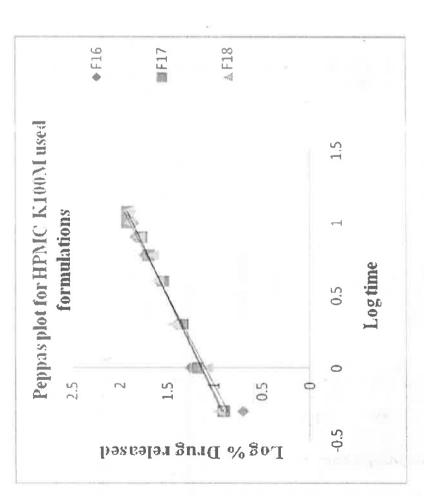


Fig5.94 Peppasplot forF16-F18

Time(hrs)	F16	F17	F18
-0.30103	0.69897	0.90309	0.954243
0	1.255273	1.176091	1.079181
0.30103	1.39794	1.342423	1.431364
0.60206	1.591065	1.544068	1.60206
0.778151	1.740363	1.69897	1.653213
0.90309	1.838849	1.778151	1.799341
_	1.857332	1.924279	1.90309
1.079181	1.897627	1.924279	1.919078
\mathbb{R}^2	0.948	0.993	0.984

Table45:Peppasdata-F16-F18

Peppas	Peppas plot for sodium alginate used formulations	Tir	Time(hrs)	F19	F20	F21
2.5			-0.30103	0.845098	0.954243	0.90309
2	4	#F19	0	1.041393	1.176091	1.230449
	A STATE OF THE STA		0.30103	1.30103	1.414973	1.39794
1.5	4	■ F20	0.60206	1.477121	1.544068	1.612784
o Dra		å F21	0.778151	1.690196	1.740363	1.69897
0.5			0.90309	1.724276	1.792392	1.838849
				1.763428	1.826075	1.857332
Ð		40 = 	1.079181	1.819544	1.875061	1.880814
0.5	0.5 1 1.5 Log time		\mathbb{R}^2	0.992	0.992	0.986

Fig5.95 Peppasplot forF19-F21

Table46:Peppasdata F19-F21

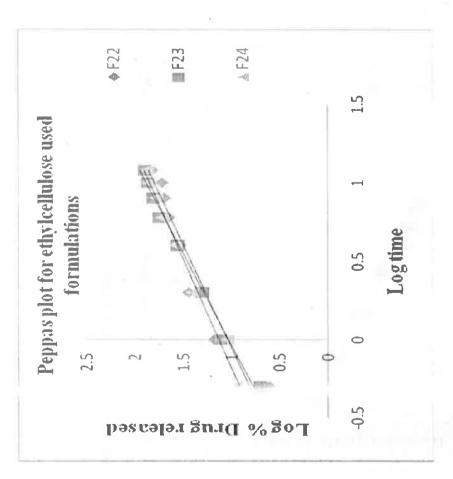


Fig5.96 Peppasplot for F22-F24

Time(hrs)	F22	F23	F24
-0.30103	0.60206	0.69897	0.954243
0	1.176091	1.113943	1.041393
0.30103	1.447158	1.30103	1.39794
0.60206	1.531479	1.556303	1.579784
0.778151	1.653213	1.748188	1.716003
0.90309	1.69897	1.812913	1.778151
1	1.724276	1.863323	1.857332
1.079181	1.826075	1.892095	1.875061
\mathbb{R}^2	0.907	0.984	0.984

Table47:Peppasdata-F22-F24

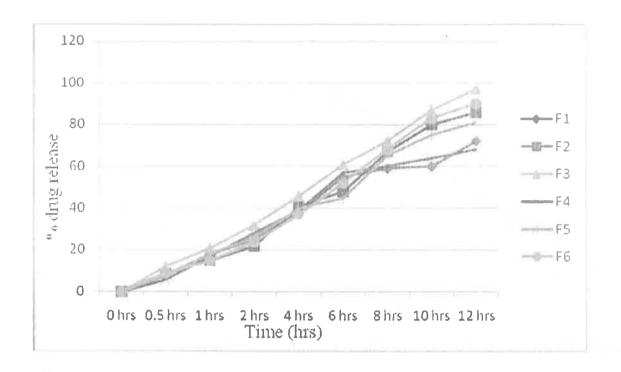


Fig49: Dissolution profile for empagliflozin formulations F1-F6

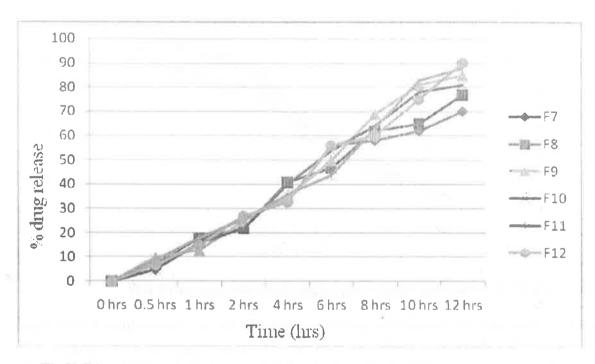


Fig 50: Dissolution profile for empagliflozin formulations F7-F12

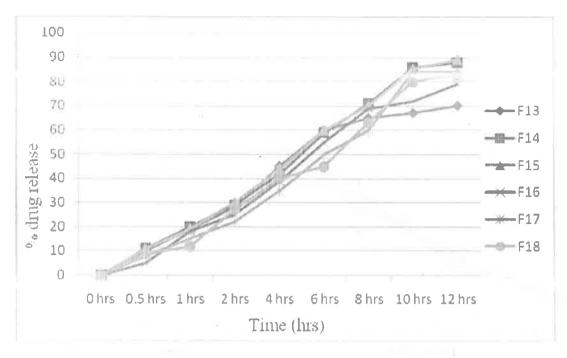


Fig51:DissolutionprofileforempagliflozinformulationsF13-F18

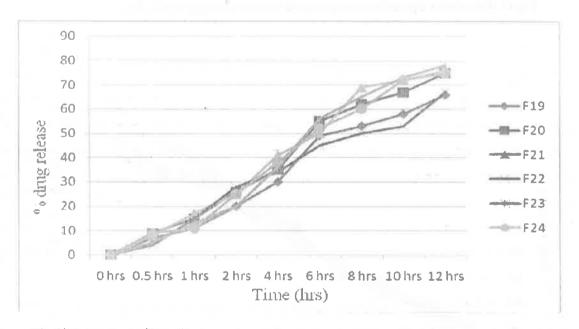


Fig52: Dissolution profile for empagliflozin formulations F19-F24

Figure 5.97 illustrates the dissolution profile of glipizide for the formulations F1-F6, figure 5.98 illustrates the dissolution profile of glipizide for the formulations F7-F12, figure 5.99 illustrates the dissolution profile of glipizide for the formulations F13-F18 and figure 5.100 illustrates the dissolution profile of glipizide for the formulations F19-F24.

5.12.4. Kineticstudies:

Drug release profiles were fitted into various kinetic equations and the values aregiven in table: 5.90. The 'n' value for the optimized formulation F3 was found to be0.637. To know the mechanism of drug release from these formulations, the data weretreated according to zero order (cumulative amount of drug released vs time), first-order (log cumulative percentage of drug remaining vs time), Higuchi's (cumulative percentage of drug released vs square root of time), and Korsmeyer (log cumulative percentage of drugreleasedvslogtime)equations.

Table 48: Drugrelease kinetic profile of empagliflozint ablets

Formulationcode	Zeroorder	Firstorder	Higuchi	Peppas	nvalue
F1	0.966	0.984	0.991	0.987	0.650
F2	0.993	0.986	0.985	0.997	0.718
F3	0.993	0.943	0.993	0.998	0.637
F4	0.949	0.979	0.988	0.972	0.715
F5	0.998	0.990	0.988	0.990	0.686
F6	0.996	0.979	0.983	0.998	0.727
F7	0.959	0.983	0.986	0.969	0.757
F8	0.983	0.992	0.991	0.986	0.700
F9	0.992	0.987	0.982	0.994	0.710
F10	0.985	0.995	0.989	0.984	0.824
F11	0.991	0.966	0.975	0.990	0.678
F12	0.990	0.959	0.981	0.991	0.753
F13	0.944	0.973	0.988	0.988	0.613
F14	0.988	0.987	0.992	0.997	0.649
F15	0.988	0.989	0.994	0.998	0.654
F16	0.976	0.996	0.990	0.974	0.796
F17	0.990	0.968	0.977	0.996	0.735
F18	0.988	0.981	0.982	0.992	0.721
F19	0.978	0.981	0.988	0.996	0.723
F20	0.979	0.992	0.992	0.996	0.668
F21	0.976	0.995	0.991	0.993	0.695
F22	0.962	0.980	0.987	0.952	0.762
F23	0.980	0.998	0.986	0.992	0.848
F24	0.983	0.997	0.991	0.992	0.716

Inference: The value of 'n' was found to be 0.637, which indicates that the drugrelease was followed by anomalous (non-fickian) diffusion. The significance of the study was to determine the order of kinetics and was concluded that it followed zeroorderkinetics with reference to table: 4.9.

5.9. Acomparative study of empagliflozino ptimized with marketed tablet

The optimized formulation was compared to that of marketed formulation (Jardiance)andthe%drugrelease was notedfor12hours.

Table49: Comparison of dissolution data of formulation F3 with the corresponding marketed tablets (Jardiance-10 mg)

Time(hrs)	%Drugreleaseofmar keted tabletcontaining empagliflozin	%Drug releaseforthebestformulation, F3 (Presentstudy)
0	0	0
0.5	10±0.14	12±0.02
1	18±0.23	21±0.31
2	30±0.19	32±0.37
4	45±0.34	46±0.41
6	58±0.15	61±0.36
8	71±0.18	72±0.23
10	84±0.21	87±0.09
12	97±0.19	97±0.17

Each value represents the mean \pm standard deviation (n=3)

The % drug release for marketed formulation was found to be 97 ± 0.19 and for the optimized formulation, F3 the % drug release was found to be 97 ± 0.17 . The dissolution study was comparable with the marketed tablet and the satisfactory results were obtained. From the *in vitro* studies the works have been extended to the next phase.

5.10. Physicalcharacterizationofempagliflozin

5.10.1. FT-IRstudies

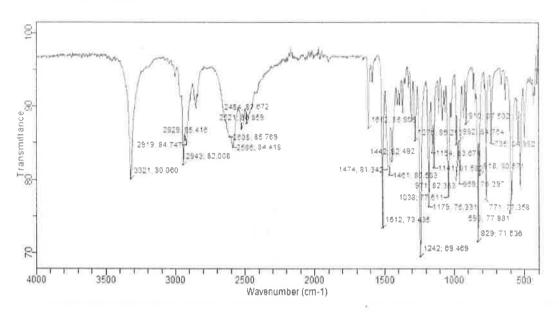


Fig53: FTIRspectraforbestfromulation-F3

Inference: The physical mixtures how edidentical spectrum with respect to the spectrum of the pure drug, indicating there is no chemical interaction between the drug molecule and polymer used. Results indicated that drug is compatible with the polymers used in the investigation.

Fig 54: FTIR spectra for pure empagliflozin Table~5.92: Pure~empagliflozin

Wavenumberincm ⁻¹	Characteristicbond
610.9	C-X(Bromide)
857.3	C-H(Aromaticoutofplanebend)
1536.6	C=C(Aromatic)
1649.5	C=C(Alkene)
2795.6	C-H(Alkanesstretch)

Inference:

The IR spectra of pure empagliflozin showed all the principal IR absorption peaks atwave numbers 610 cm⁻¹, 857 cm⁻¹, 1536.6 cm⁻¹, 1649.5 cm ⁻¹, 2795.6 cm⁻¹ respectivelyconfirmingthepurityofthedrug.

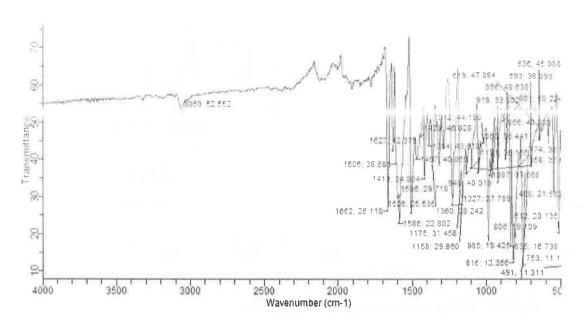


Fig55:FTIRspectrafordrug+ethylcellulose

TABLE5.93:FTIRspectraanalysisfordrug+ethylcellulose

Wavenumberincm ⁻¹	Characteristicbond
753:11	C-X(Chloride)
985:19	Aromatic-outofplane bend
1586:22	Aromatic
1662:26	Amide

Inference: The FTIR spectrum of pure drug showed characteristic amide peaks atwave numbers C-X at 610 cm⁻¹, C-H aromatic plane bend at 857 cm⁻¹, C=C at 1536.6cm⁻¹, 1649.5 cm⁻¹,. There were no new bands observed in the spectrum, which confirms that nonewchemical bonds were formed between the drug and the polymer.

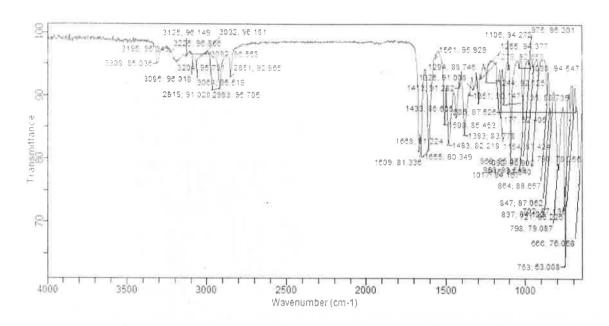


Fig56:FTIRSpectrafordrug+HPMCK100M

Table 5.94: FTIR spectra analysis for drug + HPMCK 100M

Wavenumberincm ⁻¹	Characteristicbond
753:63	C-Cl(Stretch)
864:88	C-C(Stretch)
1154:87	C-F(Stretch)
1383:83	C-H(Bendinplane)
1483:82	O-H(Stretch)
1655:80	C=N(Stretch)

Inference: FT-IR studies were carried out to know the compatibility. FT-IR results revealed that there was no significant difference in the peaks of drug and HPMCK100M in the formulation compared to pure drug as shown in figure 5.104. It was found that there was no interference to the drug with excipients and polymer used in the formulations.

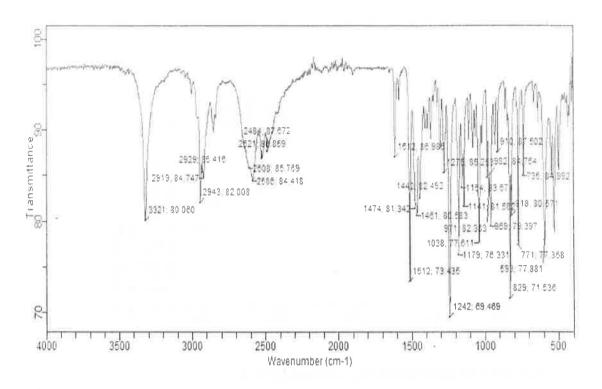


Fig57:FTIRspectrafordrug+Caesalpiniaspinosa

The IR spectral analysis of empagliflozin alone showed that the principal peaks were observed at wave numbers at 610 cm⁻¹, 857 cm⁻¹, 1536.6 cm⁻¹, 1649.5 cm⁻¹, 2795.6cm⁻¹ respectively confirming the purity of the drug. In the IR spectra of the physical mixture of empagliflozin and caesalpinia spinosa the major peaks were at 829.71,1179.76, 1512.73 and 1612.8 cm⁻¹. However, some additional peaks were observed with physical mixtures, which could be due to the presence of polymer and doesnoteffect the efficacy of the drug.

Table 5.95: FTIR spectra analysis for drug+Caesalpinia spinosa

Wavenumberincm ⁻¹	Characteristicbond
598:77	C-Br (Stretch)
829:71	C-C(Stretch)
1179:76	C-C(Stretch)
1512:73	N-H(Bending)
1474:81	C-H(Bendoutofplane)
1612:86	C=N(Stretch)

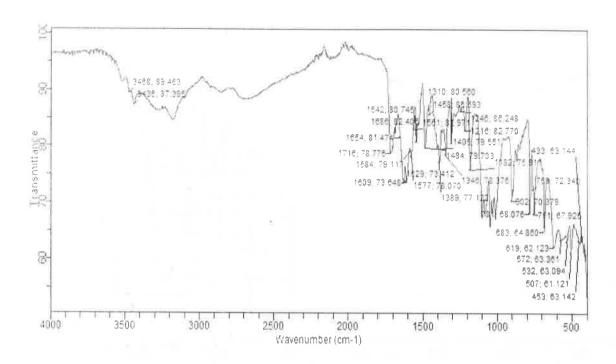


Fig5.8:FTIRSpectrafordrug+sodiumalginate

Table 5.96: Drug+sodium alginate

Wavenumberinem ⁻¹	Characteristicbond	
453:63	C-I(Stretch)	
619:62	C-Cl(Stretch)	
683:64	C-H(Rocking)	
1389:77	C-H(Bendinoutofplane)	
1577:78	N-H(Bending)	
1609:73	C-C(Stretch)	
1716:78	C=O(Stretch)	

Inference: The FT-IR spectrum showed many intense, absorption peaks that are due to the different functional groups present in the molecules. In the IR spectra wavenumber of 453.63 cm⁻¹ disclosed the presence C-I stretching, the wave number of 1716.78 cm⁻¹ showed the presence of C=O stretching, the wave number 1577.78 cm⁻¹ showed the presence of N-H bending, the wave number 1609.73 cm⁻¹ indicated the presence of C-C stretch indicating that almostsame peaks were maintained with respect to the puredrug, thus indicating that the polymeris compatible with the drug.

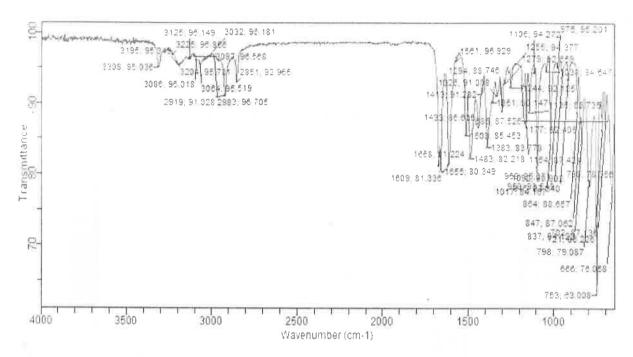


Fig59: FTIRspectrafordrug+magnesium stearate

Table 5.97: Drug+magnesium stearate

Wavenumberincm ⁻¹	Characteristicbond	
753.63	C-X(Chloride)	
798:79	C-H(Bendoutofplane)	
1017:84	C-F(Stretch)	
1383:83	C-F(Stretch)	
1668:81	C-C(Stretch)	
1609:81	C-C(Stretch)	

Inference: Physical mixture of drug and magnesium stearate was characterized byFTIRspectralanalysisforphysicalaswellaschemicalalterationofthedrugcharacteristics.Fromth ewavenumbers,itwasconcludedthattherewasnointerference of the functional groups as the principal peaks of the drug were unalteredindrugpolymerphysical mixtures,indicatingtheywerecompatiblechemically.

5.10.2. XRDstudies

The XRD studies were performed for best formulation and for pure empagliflozin which were illustrate dinfig: 5.108 and 5.109 respectively.

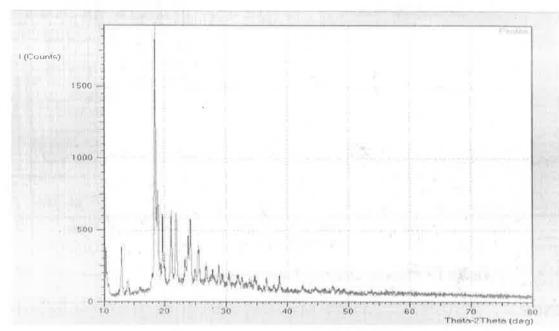


Fig60: X-raydiffractionspectrabest formulationF3

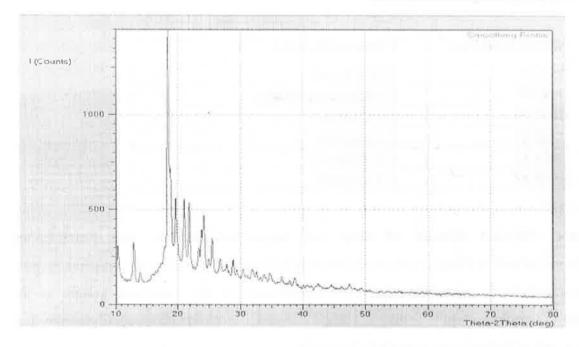
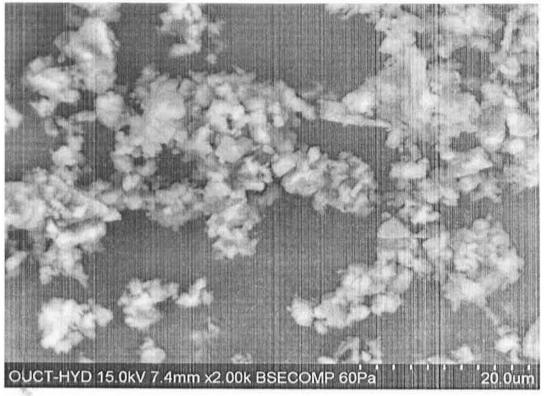


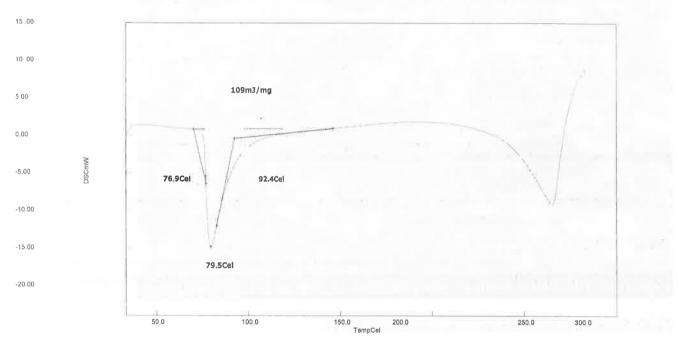
Fig61:X- raydiffractionspectraforpureempagliflozin

Inference:theX-

ray diffraction spectra of pure drug exhibits peaks at 20 angle that showed a typical crystalline pattern.

5.10.3. SEMresults




Fig. 62: Scanning electron microscopy of empagliflozin

Crystals of puresampleare of smallestsize(4-10µm)andhaveirregularshapes.Recrystallizationproductcrystalshaveintermediatesize(9-

 $15\mu m$). The agglomerates were formed by coalescence of the microcrystalline precipitates, so the agglomerates had a rugged surface. Agglomerates obtained were spherical in its shape with size $198\mu m$ - $670\mu m$.

5.10.4. DSCspectralstudies

The DSC studies were performed for pure drug and optimized formulation whichwere illustrated in Fig. 5.111 and 5.112 respectively.

F63 DSCofpureempagliflozin

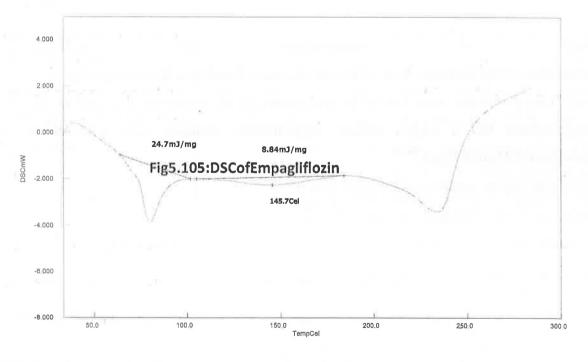


Fig64DSCofbestformulation-F3

Table 50 Compatibility profile of empagliflozinan dits excipients with respect to DSC

Sample	Appearanceof newpeaks	Fadeof existingpeaks	Shiftingof peaks	
Empagliflozin+caesalpinia spinose	No	No	No	
Empagliflozin+HPMC	No	No	No No No	
Empagliflozin+sodiumalginate	No No	No No		
Empagliflozin+ethylcellulose				
Empagliflozin+ magnesium stearate	No	No	No	

Itwasobservedthatthereisnointeractionbetweendrugandexcipents,hencetheycanbeusedintheprepa rationofempagliflozintablets.

5.11. In vivodata:

This chapter discusses (explains) the description regarding PK parameters of empagliflozin optimized spherical agglomerates tab which are formulated as control released medication for diabetic conditions. The currentaim is to perform pharmacokinetic par ameters in rabbits and to determine the time course of empagliflozincon centration in bloods amples in mathematical expressions, simultaneously to compare these with the innovative preparation of empagliflozintablets. The prepared formulation is administered in order to check the bioavailability levels in newly developed do sage forms when compared with the marketed ones.

The CDDS is designed in order that it could have the prolonged drug releasefor extended period of time. Empagliflozin formulations were prepared and amongstthe formulations and the batch using *caesalpinia spinosa* was choosed as optimizedone(F3)fromthe*in-vitro* dissolutionstudies and it was compared with *invivo*

evaluation in rabbits. As this formulation showed least amount of empagliflozin drugrelease up to 7-12 hours in a controlled releasemanner and it is choosed for this study. To compensate these results, in vivo PK parameters were planned. So the current study was aimed to perform in vivo studies and compare them with in vitroresults in order to prove the sustained drug delivery of empagliflozin of selected formulation of spherical agglomerates prepared by using natural polymer ceasalpiniaspinosa.

5.11.1. Estimation of drugin rabbit plasma:

Inalbinorabbitsweighingabout2kg,in-vivostudywasperformed.1688/PO/c/13/CPCSEA.Proposalno.526,dated06.03.2017.(ForIAECa pprovalcopypleasereferappendixno:iii)

Groupsforthein-vivo study:

In vivo study was carried out making 4 groups of albino rabbits. Each groupconsistsoffourrabbits (n=4).

I:Control-with drug

II : Control -without drug

:placeboIII:Positivecontrol-

marketedtablet.

IV: Formulation -compression of spherical agglomerates tablet (Thetabletwaspowderedandcalculatedaccordingtoanimaldose 106 and administered throughor alroutewith 20 mlofwater)

Preparationofsamplesolutions:

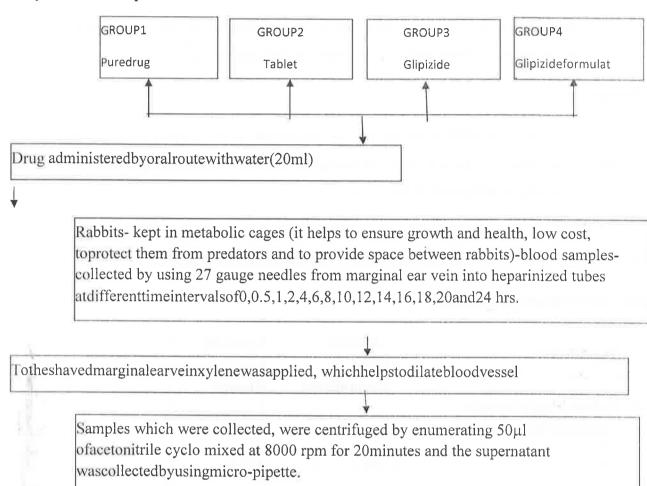


Fig 5.113: Flow chart representation of preparation of samples olution for empaglif lozing and the property of the property

20µlsamplewasinjectedafterfiltrationintotheHPLCsystem.

5.11.2. Pharmacokinetic evaluation in

rabbitsInstitutionalanimalethicalcommitteeapp

roval

The considered protocol of theempagliflozinsustained release tablets inhealthyrabbits that is approved by IAEC of Sanzyme labs pvt ltd. Telangana, India bearingthe Regno1688/PO/c/13/CPCSEA.Proposalno.526,dated06.03.2017.

Subjects:

2.0 to 2.5 kg, healthy, 16 New Zealand white rabbits were preferred in the current pre-clinical study and all the animals were under observation before 10 days of the study.

Studydesign

The current study involves parallel design for the assessment of PK criteria. New Zealand white rabbits were randomly divided into four batches, for each batchconsisting 4rabbits. *Invivo* studies-composition was depicted in table 5.100.

Half of marketed empagliflozin10 mg tablets were taken by one group andtheothergroupreceivedformulated10mgempagliflozin(optimizedformulation).

Table51: Invivotablets-composition

Ingredients	Quantity (mg)	Quantity (mg)	
	Formulation	Placebo	
Spherical agglomerates			
ofempagliflozin	10		
MCC	108.5	108.5 30 1.5 140	
Caesalpiniaspinosa	30		
Magesiumstearate	1.5		
Totalweight(mg)	150		

Feed wasnotprovided to all the groups of rabbits prior to half day and after one day of drug administration whereas water can be provided as and when required. Specimens were kept in metabolic cages and blood samples are collected using 27 gauge needle from the marginal ear vein into heparinized tubes at time intervals of 0,0.5, 1, 2,4, 6, 8,10, 12, 14,16, 18, 20 and 24 hours.

Marginal ear vein was shaved using xylene, as it dilates the blood vessel. Sampleswerecentrifugedbyadding 50µlofacetonitrilecyclomixedfor30minutesat8000

rpm and the supernatant liquid was collected by micropipette. After the filtrationprocess20µlofsamplewasinjectedintotheHPLC.

5.11.3. Resultsanddiscussion:

Analyticalmethoddevelopment:HPLC

The HPLC method development was done and validated and the run timewas made to eight (8) min. Empagliflozin shows linearity between 100 μ g/ml to1000 μ g/ml concentration and calibration curve shows coefficient of correlation of 0.999empagliflozinretention time was observed at 3.928mins.

LINEARITY

Table52:Linearityofempagliflozin

S.No	Linearitylevel	Concentration(µg/ml)	Area 18072	
1	I	100		
2	II	400	38742	
3	III	600	58502	
4	IV	800	77747	
5	V	1000	98657	
Correlationcoefficient		0.999		

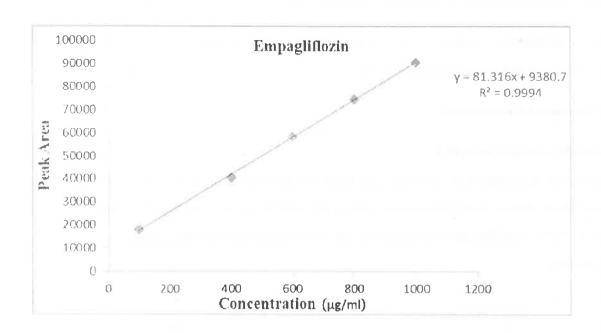
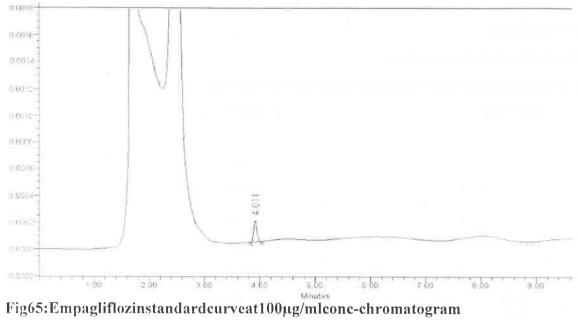
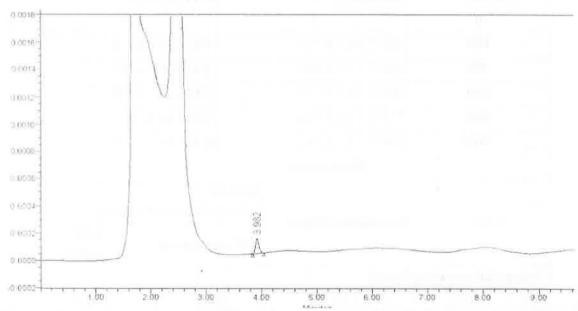


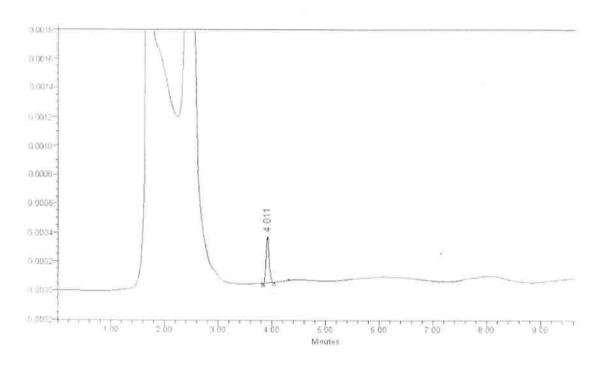
Fig64: Graphical presentation of linearity of empagliflozin

ValidationofHPLCmethod

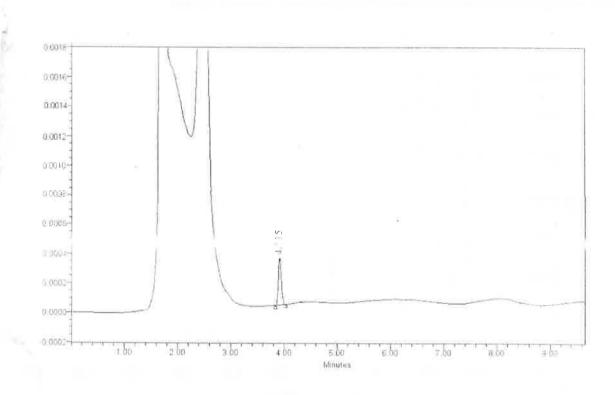

The presentwork proved that the empagliflozin peak blank in plasma sampleisnotpresentbutitis seen inchromatogram of drug solution. The range of %recovery was 99.0- 100.1% each % found be for level. RSD for the assays was0.614% for empagliflozin (less than thestandardvalue 2%). Linearregression coefficient of empagliflozinis 0.999.


LOD values infer the signal to noise ratio (S/N) to 2.98 that was within thelimits i.e., 3. The LOO values for S/N ratio 9.98 was (□10-within the TheresultsofLODandLOQwere150µg/mland450µg/mlrespectively.Organiccomposition of mobile phase andflow rate alteration didnot have any influenceinthisprocessindicatingthemethod for its robustness at ±10% deviation.

HPLC-Processvalidation


Table53: HPLCmethodvalidationvalues

Injection			Peakarea			
1			58502			
2			57426			
3			58134			
4			57956			
	5		58023			
	6		58213			
S.D			3	356.796		
RSD			0.614			
	daya	ndinterdaypreci	sionvalı			
Concentration		Peakare				
$(\mu g/ml)$	Int	raday(n=3)		Interday(n=3)		
0		0		0		
100	180)72.36± 4.325		18072.28± 4.136		
400	384	172.15± 6.002	38462.25± 6.008			
600	585	502.54± 5.119	57426.24± 2.196			
800	777	747.12± 5.106	76548.6± 6.186			
1000	986	557.51 ± 2.162	98564.8± 2.121			
		Robustness				
S.No	Par	rameterchange	System suitabilitydetermination			
5.110			USPplatecount		USP tailing	
hangeinflowrate(1	nl/m	in)				
1		1.35	5547		1.0	
2		1.5	5678		0.8	
3		1.65	5547		0.9	
Changeinth	eorga	aniccompositioni	nthemo	bilephase		
1	1 10% less		5298		1.2	
2 Actual		5101		1.3		
3						



 $Fig 66: Empagliflozinst and ard curve at \ 400 \mu g/ml conc-chromatogram$

 $Fig 67: Empagliflozin standard curve at 600 \mu g/ml conc-chromatogram$

 $Fig 68: Empagliflozinst and ard curve at 800 \mu g/ml conc-chromatogram$

 $Fig 69: Empagliflozinst and ard curve at 1000 \mu g/ml conc-chromatogram$

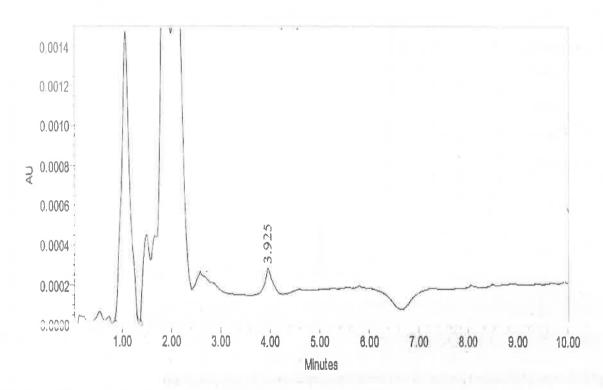


Fig 70: Empaglif lozintest animal-sample HPLC chromatogram (Formulation) at 1 hour and 1 hour animal sample HPLC chromatogram (Formulation) at 1 hour animal sample HPLC chromatogram (Formulation)

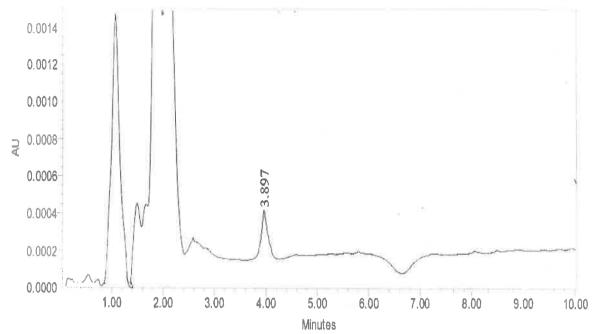


Fig 71: Empagliflozin test animal -sample HPLC chromatogram(Formulation)at2nd hour

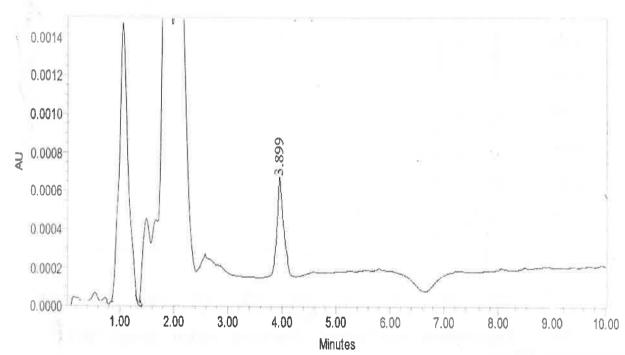


Fig72: Empagliflozin test animal - sample HPLC chromatograms(Formulation)at4th hour.

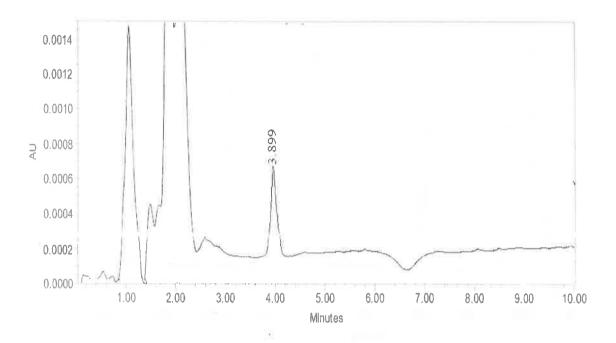


Fig 73: Empagliflozin test animal - sample HPLC chromatograms(Formulation)at8th hour.

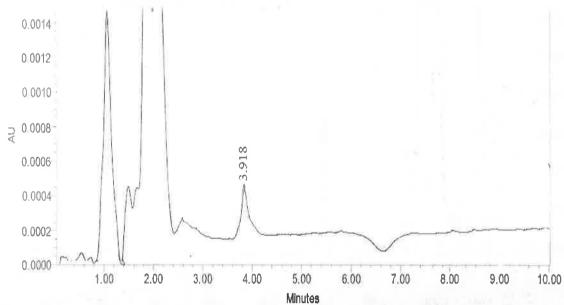


Fig 74: Empagliflozin test animal (Marketed tablet) sample HPLC chromatogramsat2ndhour.

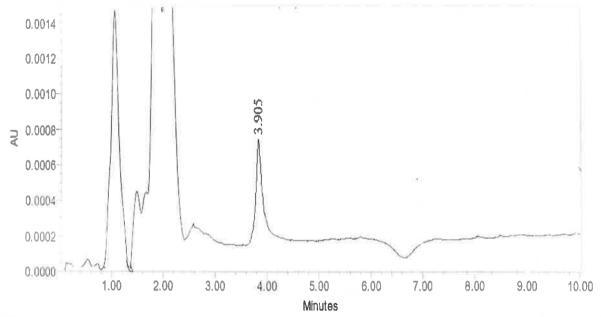


Fig 75: Empagliflozintestanimal 4 (Marketed tablet) sample HPLC chromatograms at 4 hours.

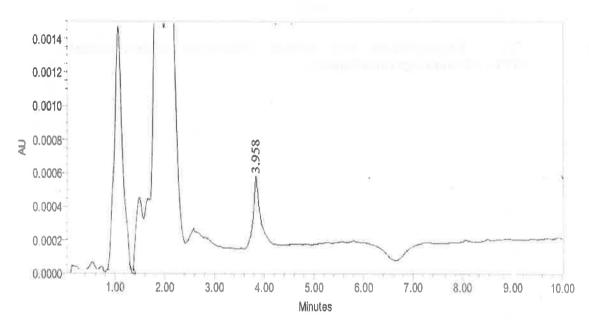


Fig 76: Empagliflozin test animal (Marketed tablet) sample HPLCchromatogramsat6hours.

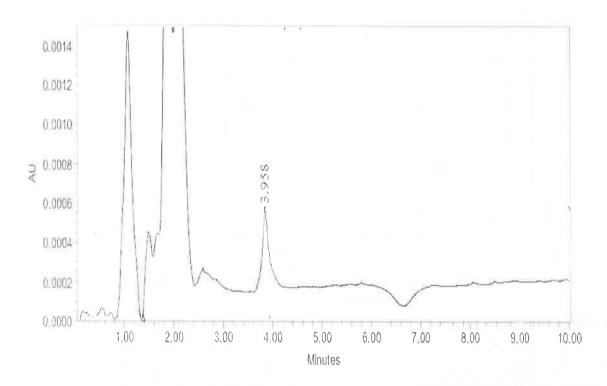


Fig 77: Empagliflozin test animal (Marketed tablet) sample HPLCchromatogramsat8hours.

Table54:Plasmaconcentrationsofempagliflozin(Optimizedformulation)atdifferenttimeintervals

Rabbits			rime(nours)	(e moi											
	(Iu	0	0.5	-	2	ব	9	∞	10	12	14	16	18	20	24
	i/Bri)	0	165	210	341	458	390	278	195	142	120	86	0	0	*
	noii	0	158	204	360	490	378	569	182	150	124	68	0	0	*
	ntra	0	159	205	352	480	390	260	189	160	118	98	0	0	*
	เออนดอา	0	163	213	360	510	374	263	190	156	120	84	0	0	*
	Plasma														
Z	[0	4	4	4	4	4	4	4	4	4	4	4	4	4
Mean		0	161.25	208	353.25	484.5	383	267.5	189	152	120.5	89.25	0	0	*
SD		0	3.304	4.243	8.995	21.626	8.246	7.937	5.354	7.832	2.517	6.185	0	0	*
Min	eters	0	158	204	341	458	374	260	182	142	118	84			
Median	ursu	0	161	207.5	356	485	384	266	189.5	153	120	87.5			
Max	icalps	0	165	213	360	510	390	278	195	160	124	86			
%CV	teitet	0	2.049	2.04	2.55	4.46	2.15	2.97	2.83	5.15	2.09	6.93	0	0	*

Spiects	Ттах(ро	C _{max} (µg/	t _{1/2} (h	MRT	Clml/mi)pA	AUCt	AUC extrapolate(AUC _{0-x}	TotalA UMC	Kel(Hr
	urs)	(lm	Ē	(hr)	ш	(lm	(µg-hrml ⁻¹)	μg-hrml ⁻¹)	(µg-hrm i')	(µg-hrml ⁻¹)	<u></u>
1	4	458	8.70	80.0	2.424	39.446	4125.30	7.802	135.26	6352.24	0.079
2	4	490	8.38	0.065	2.434	29.452	4108.10	7.352	123.52	6474.45	0.082
3	4	480	8.31	0.084	2.436	29.246	4104.56	7.163	129.47	6247.32	0.085
44	4	510	8.07	0.078	2.427	28.279	4119.71	7.215	132.21	6412.58	0.083
Statisticalparameters	arameters										
Z	4	4	4.	4	4	4	4	4	4	4	4
Mean	4	484.5	8.365	0.076	2.430	31.606	4114.443	7.383	130.115	6371.648	0.082
SI)	0.000	21.626	0.260	0.008	900.0	5.252	9.688	0.290	4,992	96.743	0.003
Min	4	458	8.07	0.065	2.42	28.28	4104.66	7.16	123.52	6247.32	80.0
Median	4	485	8.345	0.079	2.43	29.35	4113.91	7.28	130.84	6382.41	0.08
Max	4	510	8.7	0.084	2.436	39.446	4125.3	7.802	135.26	6474.45	0.085
%CV	00.00	4.46	3.11	10.71	0.23	16.62	0.24	3.93	3.84	1.52	3.04

Table55:Plasmaconcentrationofmarketedformulation

Subjects		Time(Hours)	(s.											
		0 0.5	1	2	4	9	80	10	12	14	16	18	20	54
		0 220	352	498	365	220	198	120	85	64	35	NA	NA	Y Y
2)u	0 217	360	458	372	240	186	118	88	29	34	NA	NA	NA A
3	ratio	0 206	380	456	362	246	188	126	87	64	39	NA	NA	NA
4	juəsu	0 214	345	487	362	248	184	124	98	65	35	NA	NA	NA V
	g/ml)													
Z		4	4	4	4	4	4	4	4	4	4	4	4	4
Mean		0 214.250	359.250	474.750	365.250	238.500	189.000	122.000	86.500	65.000	35.750	-×	*	·×
SD	S	0 6.021	15.130	20.998	4.717	12.793	6.218	3.651	1.291	1.414	2.217	*	*	*
Min	zəjəi	0 206.00	345.00	456.00	362.00	220.00	184.00	118.00	85.00	64.00	34.00	*	*	*
Median	aran	0 215.50	356.00	472.50	363.50	243.00	187.00	122.00	86.50	64.50	35.00	*	*	*
Max	qlsəi	0 220	380	498	372	248	198	126	88	19	39	*	*	*
%CV	tzitr	0 2.81	4.21	4.42	1.29	5.36	3.29	2.99	1.49	2.18	6.20	*	-X-	-¾-

(CV=Coefficientofvariation,SD=Standarddeviation, NA=Notapplicable)

Table56:PKcriteriaofjardiance

Subjects	T _{max} (Cmax(µg/	t _{1/2} (h	MRT	CI)pA	AUC _{0-t}	AUC	AUC ₀₋₀	TotalA	Kel(hr
	Hr)	ml)		(hr)	ml/min	(lm	(µg-hrml¹)	extrapolate(ug-hrml ⁻¹)	(µg-hrml'')	UMC (μg -hrm $^{-1}$)	<u></u>
	2.0	498	6.71	0.085	3.03	29.448	3291.85	6.602	325.12	5987.25	0.103
2	2.0	458	5.33	980.0	3.53	27.174	2832.66	4.416	458.45	5879.57	0.129
	2.0	456	5.55	0.081	3.50	28.081	2853.06	4.866	460.32	5632.21	0.124
4	2.0	487	5.31	0.078	3.50	26.835	2856.06	4.567	450.47	5786.28	0.130
7	4	4	4	4	4	4	4	4	4	4	4
Mean	2.000	474.750	5.725	0.083	3.390	27.885	2958.408	5.113	423.590	5821.328	0.122
SD	0.000	20.998	999.0	0.004	0.240	1.168	222.538	1.010	65.785	150.462	0.013
Min	2.00	456.00	5.31	80.0	3.03	26.84	2832.66	4.42	325.12	5632.21	0.10
Median	2.00	472.50	5.44	80.0	3.50	27.63	2854.56	4.72	454.46	5832.93	0.13
Max	7	498	6.71	980.0	3.53	29.448	3291.85	6.602	460.32	5987.25	0.13
%CV	0.00	4 42	11 63	4 18	7.09	4.19	7.52	19.76	15.53	2.58	10.38

Empagliflozin marketed tablet

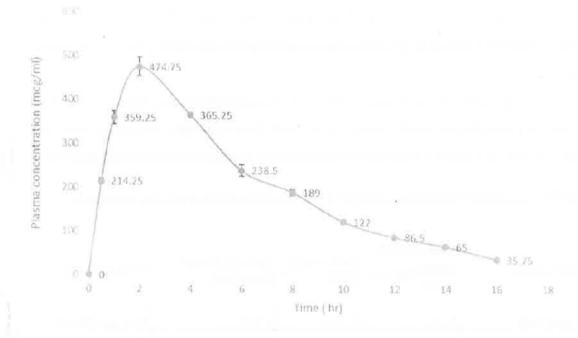


Fig 78: Plasma concentration vs. time of marketed empagliflozinin rabbit plasma

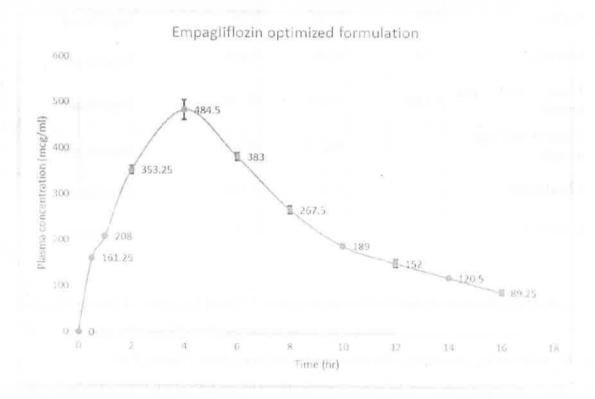


Fig 79: Plasma concentration vs. time of testempa gliflozins pherical agglomerates in rabbits

5.15.7. Pharmacokinetic parameters evaluation

These criteria are important for assuring the values of bioavailability, like max C_{max} , T_{max} , area under curve, V_d , $t_{1/2}$, mean residence time and Cl_T . Fig 5.115- fig 5.119showstheHPLCchromatogramsforreferenceempagliflozininrabbitplasmaconcentrati on.Fig5.120-

fig5.127showstheHPLCchromatogramsoftestformulationinrabbitplasmalevels. Table5.102 and 5.104illustratesplasmaconcentration values and bioavailability criteria of test and reference tablet. The graphwasplottedwithmeanandstandarddeviation of all the four rabbits.

Table 57: Comparative bioavailability parameters of standard and test formulations

PKparameter	Reportedlite rature survey	Referencet ablet	Sphericalaggl omerates	't'testat0.05
C _{max} (μg/ml)	3.33	4.754	4.845	Notsignificant
T _{max} (hours)	3.8	2.0	4.0	Significant
t _{1/2} (hrs)	5.54	5.725	8.36	Significant
MRT(h)	17.1	0.083	0.076	Significant
Total AUC (μg- hr/ml)	53.89	29.58	41.14	Significant
TotalAUMC(μg- hr/ml)	_	582.13	637.16	Significant
Cl(ml/min)	-	3.39	2.430	Significant
K _{el} (hrs ⁻¹)	-	0.122	0.082	Significant

 $C_{max} of empagliflozin market and test formulations were 4.754 \pm 0.1 \mu g/ml and 4.845 \pm 0.01 \mu g/ml \\ with acceptably node viation (P<0.05) and a Pvalue of$

 $0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.35 hours, 4.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.35 hours, 4.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.35 hours, 4.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.35 hours, 4.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.35 hours, 4.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.085. Values of T_{max} for empagliflozin market and testwere 2.0 \pm 0.085. Values of T_{max} for empagliflozin market and T_{max} for empa$

0.73hourscorrespondinglywitheloquentconflict(P<0.05)andaPvalue0.0005.standardandtestt_{1/2} valueswere5.725±0.531hrs,8.36±1.59hrs,specificallywith

acceptable deviation (P<0.05) and a P value is 0.0002. MRT values of standard and also test were found to be 0.083 \pm 0.034 hrs and 0.076 \pm 0.028 hrs with acceptabledeviationwithaPvalueis0.002.AUC_{0- ∞}valueswere29.584 \pm 20.04 μ g-hr/ml, 637.164 \pm 49.44 μ g-hr/ml respectively for standard and test with acceptable deviation(P<0.05)andPvalueis<0.0001.

As inter and intra subject deviation is present, a difference in individual T_{max} and C_{max} variables is observed. The same case is seen in both innovative and preparedsamples too. The consequences of PK parameters showed that the innovative productand testwere absolutely different proving that the formulated productshowed the drughassustained release.

${\bf 5.15.8 Stability studies for the optimized formulation of empagliflozin for a period of 120 days}$

Stability testing was performed for a period of 4 months at accelerated conditions of 40°C±2°C/75% ±5%RHfor the optimized formulation and the dissolution parameters were evaluated for 12hr drug release. The following table: 5.107 depicts the data for dissolution studies and fig: 5.130 depicts its release in graphical representation

Table: 58Stability studies of empagliflozino ptimized formulation

Time (hrs)	30day DR	60day DR	90day DR	120day DR
0	0	0	0	0
0.5	11±0.17	11±0.23	11±0.14	10±0.01
1	20±0.31	19±0.03	18±0.18	18±0.05
2	34±0.25	33±0.13	32±0.08	31±0.02
4	45±0.18	44±0.15	43±0.34	42±0.18
6	62±0.02	59±0.06	58±0.12	59±0.24
8	74±0.23	72±0.18	72±0.03	73±0.21
10	86±0.34	84±0.24	82±0.19	82±0.12
12	97±0.14	97±0.72	97±0.01	97±0.11

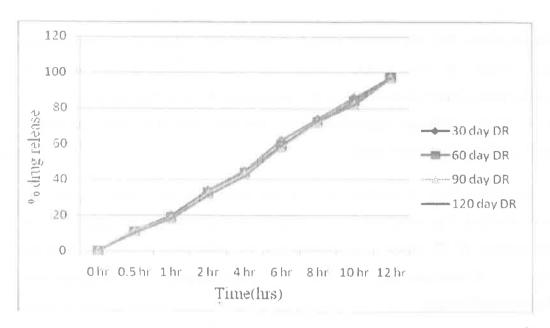


Fig:80 Stabilitystudies indicating the drug release of empagliflozin

Inference: Stability studies conducted as per ICH guidelines for optimized formulation at accelerated conditions ($40 \square C \pm 2 \square C / 75\% \pm 5\%$ RH) for 120 days. There was no significant change in the physical property and percent of drug release was within the limits during the stability period.

Chapter VI. Outcome of the Project

Controlled release medication has gained a very pivotal role in the pharmaceutical dosage forms. A new and surprisingly simple, safe and inexpensive formulation for controlled release tabletis preferred which shows a release pattern for the active substance in a programmed rate of approximately zero order. It not only prolongs the duration of drug release but also increases the retention of drugs in the body

thus by maintaining a steady state concentration levels and thus a release pattern for the body

thus blood level of the active material is thereby maintained for that period of time.

blood level of the active material is thereby maintained for that period oftime. Diabetes is one of the diseases in the world which is being considered as majormetabolic disorders where high blood glucose levels are present in the body for aprolonged period of time. Many formulations were introduced into the market forcombating its risks in life. Proper care should be taken in selecting and administeringthe drug based on dose and frequency of administration. Spherical agglomerationprocess is used as a novel technique in order to increase the bioavailability of poorlysoluble drugs. To form the spherical crystals or agglomeratesparameters like amount of bridging liquid used, addition of poor solvent solvent are processed. Tooptimize theformulations, speed of agitation, stirring rate, and temperature were maintained. The use of natural polymers like caesalpiniaspinosawhich is commonlyknown as taragum, are preferred for its controlled release nature to prolong the drugeffectin the plasma. In addition to the controlled release, unique techniques likespherical agglomeration is advantageous to have a sustained action by increasing theglobule size and by increasing the bioavailability of poorly soluble drugs. Polymerslike HPMC, ethyl cellulose and sodium alginate were used under different viscositygrades.

Based on the investigations the following conclusions were drawn

Spherical agglomeration technique has been proved its efficiency in increasingthesolubility and dissolution rate of poorly watersoluble drugs which is a very big confront in the pharmaceutical market.

• The present study was aimed to develop and evaluate anti-diabetic sustained release or altablets of empagliflozin.

Onthebasisofliteraturesurveyandcompatibilitytests, excipientslikemicrocrystalli necellulose, magnesium stearate wereused.

- C_{max} ofempagliflozin market and test formulations were 4.75 \pm 0.1 μ g/ml and4.845 \pm 0.01 μ g/mlwithacceptablynodeviation(P<0.05)andaPvalueof 0.085.ValuesofT_{max}forempagliflozinmarketandtestwere2.0 \pm 0.35hours, 4.0 \pm 0.73 hours correspondinglywith eloquent conflict (P<0.05) and a Pvalue 0.0005. Standard and test t_{V_2} values were 5.725 \pm 0.531 hrs, 8.36 \pm 1.59hrs, specifically with acceptable deviation (P<0.05) and a P value is 0.0002.MRTvaluesofstandardandalsotestwerefoundtobe0.083 \pm 0.034hrsand 0.076 \pm 0.028hrswithacceptabledeviationwithaPvalueis0.002.AUC_{0-w}valueswere295.84 \pm 20.04 μ g-hr/ml,637.16 \pm 49.44 μ g-hr/mlrespectivelyforstandardandtestwithacceptabledeviation(P<0.05)andPvaluei s <0.0001.
- As inter and intra subject deviation is present, a difference in individual T_{max} and C_{max} variables is observed. The same case is seen in both innovative and prepared samplestoo. The consequences of pharmacokinetic parameters showed that the innovative product and test were absolutely different proving that the formulated product showed the drug has extended release. The graphwas plotted with mean and standard deviation of all the four rabbits.
- Itconcludesthatdirectcompressionofsphericalcrystallizationofantidiabeticdrugs withselectivepolymersisan efficientmethodtoimprovecompressibilityandalsodissolutionprofileofpreparedt ablets.

7.2 RECOMMENDATIONSANDFUTURESCOPEOFTHESTUDY

Theresultsofcurrentresearchindicatedthatthepreparationofempagliflozin tablets by spherical agglomerates method improved the solubility and dissolution rate. All the prepared spherical agglomerates of both the drugs exhibitedimproved flow and are spherical in shape. The spherical agglomeration techniquealong with natural polymer had its success in prolonged release rate of the drugs. Allthe formulations thatwere prepared by spherical agglomeration method complied with the Indian Pharmacopoeial standards in its kinetics and stability studies criteria. Out of all the polymers used Caesalpiniaspinosahas better sustainability and showedbetter dissolution rate thus

increased bioavailability is observed in rabbit models. Therate of release of drug had its prolonged action i.e., sustained release when combinedwith natural polymer i.e., *Caesalpiniaspinosa*. Hence the objective of the currentresearchwas achievedbysphericalagglomeratetechnique.

In this thesis, sustained release studies were performed. Other types of controlledrelease medications can also be done by substituting some other type of natural orsynthetic polymers with other drugs with respective to disease and its classification. Other

formulationslikepatches, filmsetccanbestudied for commercialization.

REFERENCES

- [1]. http://www.pharmatips.in/Articles/Pharmaceutics/Tablet/Introduction-Of-Direct-Compression-Tablet.aspx
- [2]. ParulSaini, Anoop Kumar and SharadVisht. Spherical Agglomeration: A Novel Technique of Particulate Modification & Developing Niche Drug Delivery System. IJBR Vol.6 No.2 July-December 2013, pp.86-101 @ International Science Press, (India) 86.
- [3]. https://en.wikipedia.org/wiki/Diabetes mellitus
- [4]. https://my.clevelandclinic.org/health/diseases/7104-diabetes-mellitus-an-overview
- [5]. Diagnosis and Classification of Diabetes Mellitus American Diabetes Association Diabetes Care 2004 Jan; 27(suppl 1): 5-10.
- [6]. https://www.webmd.com/diabetes/guide/types-of-diabetes-mellitus#1.
- [7]. http://googleweblight.com/i?u=https://www.mayoclinic.org/disease-conditions/type-1-diabetes/symptoms-causes/syc-20353011&hl=en-IN.
- [8]. https://www.webmd.com/diabetes/guide/types-of-diabetes-mellitus#2.
- [9]. https://my.clevelandclinic.org/health/diseases/7104-diabetes-mellitus-an-overview.
- [10]. https://www.webmd.com/diabetes/guide/risk-factors-for-diabetes#1.
- [11]. U.Satyanarayana, U Chakrapani. Biochemistry. 4th edition. 2013. Copublished by Reed Elsevier India Pvt Ltd and books and Allied Pvt Ltd. Pg: 669-670.
- [12]. S. K. Putta and P. Srikumar. Spherical crystallization and its process optimization. Journal of Chemical and Pharmaceutical Research, 2016, 8(7):611-623
- [13]. ArindamChatterjee, Madan Mohan Gupta, and BirendraSrivastava
 International Journal of Pharmaceutical Investigation Spherical crystallization: A
 technique use to reform solubility and flow property of active pharmaceutical
 ingredients 2017 Jan-Mar; 7(1): 4–9. doi: 10.4103/jphi.JPHI 36 16
- [14]. Patil SV, Sahoo. Spherical Crystallization: a Method to Improve Tabletability Research Journal of Pharmacy and Technology 2(2): April.-June. 2009. pg.234-237.

- [15]. NitanBharti et al., Spherical Crystallization: A Novel Drug Delivery Approach, Asian Journal of Biomedical and Pharmaceutical Sciences; 3(18) 2013, pg no 10-16
- [16]. Parida R et al., overview of spherical crystallization in pharmaceutical, International Journal of Pharma and Bio Sciences, Vol.1/Issue-3/Jul-Sep.2010.
- [17]. JyothiThati, et al., the mechanisms of formation of spherical agglomerates European journal of pharmaceutical sciences 2011/3/18 42(4)Pages 365-379
- [18]. Mudit Dixit et al., Preparation and characterization of spherical agglomerates of ketoprofen by neutralization method. International Journal of Pharma and Bio Sciences, Vol-1, Issue-4, Oct-Dec.2010, Pg: 395-406).
- [19]. Pritishkurumkar et al., preparation of spherical crystal agglomerates via crystalloco-agglomeration technique, Digest Journal of Nanomaterials and Biostructures Vol. 7, No. 3, July - September 2012, p. 1223 – 1236.
- [20]. SarfarazMd et al., Particle Design of Aceclofenac-Disintegrant Agglomerates for Direct Compression by Crystallo-Co-Agglomeration Technique. Asian Journal of Pharmacy and Technology 1(2): April-June 2011; Page 40-48.
- [21]. A.R. Tapas et al., enhanced dissolution rate of felodipine using spherical agglomeration with Inutec SP1 by quasi emulsion solvent diffusion method Research in Pharmaceutical Sciences 2009 Jul-Dec; 4(2): 77–84.
- [22]. Alladisaritha et al., Enhancement of Dissolution and Anti- inflammatory Activity of Meloxicam by Spherical Agglomeration Technique, Journal of Pharmaceutical Sciences and Research Vol.4(1), 2012, pg.no 1657-1661.
- [23]. SachinkumarPatil et al., Directly Compressible Glibenclamide Tablet Prepared from Spherical Agglomerates: A Comparative Evaluation with Marketed Tablet, Journal of Pharmaceutical Science and Technology, Volume 3 (Issue 1) 2013; pg:31-36.
- [24]. Sunil Kumar et al., a comparative evaluation of direct compression and wet granulation methods for formulation of stavudine tablets, Journal of Global Trends in Pharmaceutical Sciences / 5(3)-(2014) 2000-2003.
- [25]. Fadke J et al., Formulation Development of Spherical Crystal Agglomerates of Itraconazole for Preparation of Directly Compressible Tablets with Enhanced Bioavailability, American Association of pharmaceutical scientistsPharmSciTech. 2015 Dec;16 (6):1434-44.

- [26]. GadhaveMV et al., Preparation and Characterization of Spherical Crystals of Embelin to Improve the Solubility and Micromeritic Properties, International Journal of Pharmaceutical and Clinical Research 2014; 6(4): 363-369.
- [27]. PavitraSolanki et al., Designing & development of spherical agglomerates of ibuprofen paracetamol blend for improved tableting and dissolution, International Journal of Therapeutic Applications, Volume 8, 2012, 8-13
- [28]. P. K. Kulkarni et al., spherical agglomerates of mefenamic acid by solvent change method, International journal of pharmaceutical sciences Vol-2, Issue-2, 2011 pg:111-125.
- [29]. Ian J Neeland et al., Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus Diabetes & Vascular Disease Research 2016, Vol. 13(2) 119–126.
- [30]. IlkkaTikkanen et al., Empagliflozin reduces blood pressure in patients with type 2 diabetes and hypertension. Diabetes Care 2015 Mar;38(3):420-428.
- [31]. Hans-Ulrich Häring *et al.*, Empagliflozin as add-on to metformin plus sulfonylurea in patients with type 2 diabetes: a 24-week, randomized, double-blind, placebocontrolled trial. Diabetes Care. 2013 Nov;36(11):3396-404.
- [32]. Matthew J. Budoff et al., Effects of canagliflozin on cardiovascular risk factors in patients with type 2 diabetes mellitus. International Journal of Clinical Practice 2017 May; 71(5): e12948.
- [33]. Bode B et al., Long-term efficacy and safety of canagliflozin over 104 weeks in patients aged 55-80 years with type 2 diabetes. Diabetes, Obesity and Metabolism. 2015 Mar;17(3):294-303.
- [34]. ParthasarathiKeshavarao et al., Spherical Agglomeration of Naproxan by Solvent Change Method, S. Journal of Pharmaceutical Sciences, 4(1): 01-08.
- [35]. IzabelaPolowczyk et al., Spherical agglomeration of acetylsalicylic acid, E S Web of Conferences e sconf /2016 3 8.
- [36]. Parmarshital S et al., spherical agglomeration a novel approach for solubility and dissolution enhancement of simvastatin, Asian Journal of Pharmaceutical and Clinical Research, Vol 9, Issue 6, 2016, 65-72.
- [37]. M. Dixit et al., preparation and characterization of spherical agglomerates of piroxicam by neutralization method, American journal of drug discovery and development, 2011,1 (3), 188-199.

- [38]. V.B. Yadav et al., effect of different stabilizers and polymers on spherical agglomerates of gresiofulvine by emulsion solvent diffusion (ESD) system, international journal of pharm tech research, vol(2), 2009, 149-158.
- [39]. Glipizide https://en.m.wikepedia.org/wiki/glipizide
- [40]. Glipizide https://www.drug bank.ca/drugs/DB01067
- [41]. Glipizidehttps://reference.medscape.com/drug/glucotrol-glipizide-342704#10
- [42]. MedlineplusEmpagliflozinhttps://medlineplus.gov/druginfo/meds/a614043.html
- [43]. Empagliflozin. https://www.diabetes.co.uk/diabetes-medication/jardiance.html
- [44]. Empagliflozin Rx list. https://www.rxlist.com/jardiancedrug.htm#description
- [45]. Empagliflozinhttps://reference.medscape.com/drug/jardiance-empagliflozin-999907
- [46]. Caesalpiniahttp://tropical.theferns.info/viewtropical.php?id=Caesalpinia+spinosa
- [47]. A handbook by sustainable polymers: processing and applications.edited by Vijay Kumar Thakur, ManjuKumari.
- [48]. A book by M. Paz Arriaz, frontiner in horticulture, medical and aromatic plants: the basics of industrial applications, volume 1, .
- [49]. Ethylcellulosehttps://www.intechopen.com/books/cellulose-medical-pharmaceutical-and-electronic-applications/application-of-cellulose-and-cellulose-derivatives-in-pharmaceutical-industries.
- [50]. Ethylcellulosehttps://googleweblight.com/i?u=https://pubchem.ncbi,nih,gov/compound/24832091&hl=en-IN.
- [51]. Ethylcellulosewww.fao.org
- [52]. Hydroxy propyl methyl cellulose.https://www.drugs.com/inactive/hydroxypropyl-methylcellulose-162.html
- [53]. Hydroxy propyl methyl cellulose https://www.sigmaaldrich.com/catalog/product/sigma/56340?lang=en®ion=IN
- [54]. Hydroxy propyl methyl cellulose https://labdoor.com/article/what-is-hydroxypropyl-methylcellulose
- [55]. Nikhil K Sachan et al., Sodium alginate: the wonder polymer for controlled drug delivery, Journal of Pharmacy Research 2009, 2(8),1191-1199.
- [56]. Sodium alginate https://www.drugs.com/international/sodium-alginate.html
- [57]. Jan Karlsen et al., Sodium alginate in Drug Delivery Systems, Drug Development and Industrial Pharmacy, 28(6), 621–630 (2002).
- [58]. Magnesium stearate https://en.wikipedia.org/wiki/Magnesium stearate

- [59]. Magnesium stearatehttp://shodhganga.inflibnet.ac.in/bitstream/10603/28951/11/11_chapter%20 5.pdf
- [60]. Magnesium stearate shodhganga.inflibnet.ac.in/bitstream/10603/61806/10/11_chapter%204.pdf
- [61]. Microcrystalline cellulose https://www.drugs.com/inactive/microcrystalline-cellulose-48.html
- [62]. Microcrystalline cellulose http://www.fao.org/docrep/w6355e/w6355e0l.htm
- [63]. Clare E. M. McEnroe, A book on Microcrystalline cellulose. The Functionality of Microcrystalline Cellulose and Carrageenan in a Low Fat Processed Cheese Spread.1996, pg: 360.
- [64]. Satani R. R et al., design and development of compressed coated as chronomodulated system for hypertension, International Bulletin of Drug Research., 4(6): 45-59, 2014
- [65]. Gita Chaurasia et al., a review on pharmaceutical preformulation studies in formulation and development of new drug molecules, International Journal of Pharmaceutical Sciences and Research (2016), vol 7, issue 6 pg no, 2313-2320.
- [66]. Rinalmistry et al., determination of angle of response of pharmaceutical materials based on image processing using labview, International Journal ofAdvanced Research in Electrical, Electronics and Instrumentation Engineering, vol 6, issue 3, march 2017, pg no 1125-1131.
- [67]. Manoj Kumar et al., development and characterization of aceclofenac enteric coated tablets, International Journal of Research and Development in Pharmacy and Life Sciences, , 4(6), October- November 2015, 1861-1866
- [68]. Particle.dk/methods-analytical-laboratory/bulk-and tapped-density/
- [69]. Amrutha JV et al., pre and post compression studies of tablets. Indian Journal of Inorganic Chemistry 2016; 11(4), pg no 100- 109.
- [70]. Hitesh Chaturvedi et al., post compression evaluation parameters for tablets-an overview. European Journal of Pharmaceutical and Medical Research, 2017, 4(11), 526-530.
- [71]. Haritha B et al., A Review on Evaluation of Tablets, journal of formulation science and Bioavailability 2017, Volume 1, Issue 1, pg 1-5.
- [72]. Zia-ur-Rahman et al., Post-Market In-Vitro Comparative Evaluation of Quality Control Parameters of Paracetamol Compressed Tablets Manufactured in Local

- Industrial Zones of Kpk Pakistan, The Pharma Innovation, Vol. 2 No. 3 2013, pg 11-15.
- [73]. PranatiSrivastava et al., formulation and evaluation of paracetamol tablets to assess binding property of orange peel pectin, International Journal of Pharmaceutical Sciences Review and Research, Volume 3, Issue 1, July August 2010, pg 30-34.
- [74]. Suvakanta Dash et al., kinetic modeling on drug release from controlled drug delivery system. ActaPoloniaePharmaceutica- Drug Research, vol 67 issue 3 2010 pg no 217-223
- [75]. PrakashGoudanavar et al., Development and in vitro characterization of esomeprazole floating gastro retentive microspheres, Journal of Applied Pharmaceutical Science Vol. 3 (03), pp. 071-077, March, 2013.
- [76]. M. Mohan varma et al., design and evaluation of gastroretentive floating matrix tablets of tramadol hydrochloride, International Journal of Chemistry and Pharmaceutical Sciences, vol. 1 (4) 2012.
- [77]. Zaida Urban-Morlan et al., Preparation of Ethyl Cellulose Nanoparticles by Solvent-Displacement Using the Conventional Method and a Recirculation System, The Journal of the Mexican Chemical Society 2015, 59(3), pg173-180.